[1] J. Poirier and N. Seloula. Regularity results for a model in magnetohydrodynamics with imposed pressure. [arXiv | .pdf]
[2] A. Bouharguane and N. Seloula. A New Discontinuous Galerkin Formulation for the Boussinesq system with Navier-type boundary condition. [HAL | .pdf]
[3] J. Poirier and N. Seloula. Discontinuous Galerkin method for the incompressible Magnetohydrodynamic system with Navier-type boundary condition. [HAL | .pdf]
[14] A. Bouharguane and N. Seloula, A direct discontinuous Galerkin method for a high order nonlocal conservation law, Computers & Mathematics with Applications, Volume 141, Pages 1-14, (2023) [DOI | .pdf]
[13] J. Poirier and N. Seloula. Regularity results for a model in magnetohydrodynamics with imposed pressure. C. R. Math. Acad. Sci. Paris, 358(9--10):1033–1043, (2020) [DOI | .pdf]
[12] A. Bouharguane, N. Seloula, Local Discontinuous Galerkin method for convection-difusion-fractional anti-diffusion equations, Applied Numerical Mathematics, Volume 148, Pages 61–78, (2020) [DOI | .pdf]
[11] V. Anaya, A. Bouharguane, D. Mora, C. Reales, R. Ruiz-Baier, N. Seloula, H. Torres, Analysis and approximation of a vorticity-velocity-pressure formulation for the Oseen equations. J. Sci. Comput. 80, no. 3, 1577–1606, (2019) [DOI | .pdf]
[10] M. Louaked, N. Seloula, S. Trabelsi, Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method. Numer. Methods Partial Differential Equations 33, no. 6, 1949-1965, (2017) [DOI | .pdf]
[9] H. Al Baba, C. Amrouche, N. Seloula, Instationary Stokes problem with pressure boundary condition in L p-spaces. J. Evol. Equ. 17, no. 2, 641–667, (2017) [DOI | .pdf]
[8] M. Louaked, N. Seloula, S. Sun, S. Trabelsi, A pseudocompressibility method for the incompressible Brinkman-Forchheimer equations, Differential Integral Equations. Volume 28, Number 3/4, 361--382 (2015) [DOI | .pdf]
[7] C. Amrouche, P. Penel, N. Seloula, Some remarks on the boundary conditions in the theory of Navier-Stokes equations, Ann. Math. Blaise Pascal 20 (2013), no. 1, 37--73 [DOI | .pdf]
[6] C. Amrouche, N. Seloula, Lp-Theory for Vector Potentials and Sobolev's Inequalities for Vector Fields, Application to the Stokes Equations with Pressure boundary conditions, Math. Mod. Meth. Appl. Sc., 23-1, 37--92, (2013) [DOI ]
[5] C. Amrouche, N. Seloula, Lp-theory for the Navier-Stokes equations with pressure boundary conditions, Disc. Cont. Dyn. Syst., Ser. S, Vol. 6, Number 5, 1113--1137, (2013) [DOI | .pdf]
[4] C. Amrouche, N. Seloula, On the Stokes equations with the Navier-type boundary conditions, Differential Equations and Applications 34, 581—607, (2011) [DOI | .pdf]
[3] C. Amrouche, N. Seloula, Stokes Equations and Elliptic Systems with Non Standard Boundary Conditions, Comptes Rendus Math. Académie des Sciences, 349, no. 11-12, 703--708, (2011) [DOI | .pdf]
[2] C. Amrouche, N. Seloula, Lp-Theory for Vector Potentials and Sobolev's Inequalities for Vector Fields, Comptes Rendus Math. Académie des Sciences, 349, no. 9-10, 529--534, (2011) [DOI | .pdf]
[1] R. Becker, N. Seloula, Numerical simulation of the liquid crystals, Monograf'ias Mathematicas Garcia Galdeano, 35, 65--71 (2010) [.pdf]
En cours...
nour-elhouda.seloula (at) unicaen.fr
Phone : (+33) 2 31 56 74 44
Bureau : Bâtiment Sciences 3, Campus II, 1ère étage, bureau 128
Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Normandie,