
D ifferential
Equations

& Applications
Volume 3, Number 4 (2011), 581–607

ON THE STOKES EQUATIONS WITH THE

NAVIER–TYPE BOUNDARY CONDITIONS

CHERIF AMROUCHE AND NOUR EL HOUDA SELOULA

Dedicated to Professor Jesús Ildefonso Dı́az
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Abstract. In a possibly multiply-connected three dimensional bounded domain, we prove in the
Lp theory the existence and uniqueness of vector potentials, associated with a divergence-free
function and satisfying non homogeneous boundary conditions. Furthermore, we consider the
stationary Stokes equations with nonstandard boundary conditions of the form u · n = g and
curlu×n = h×n on the boundary Γ . We prove the existence and uniqueness of weak, strong
and very weak solutions. Our proofs are mainly based on In f −Sup conditions.

1. Introduction

In this paper, we are interested in the stationary Stokes equations:

−Δu+∇π = f and divu = 0 in Ω, (1.1)

where u is the velocity vector field, π is the pressure, f is the external force and Ω⊂
R

3 is bounded possibly multiply-connected domain. This system is mostly studied with
no-slip Dirichlet’s boundary condition, corresponding to the case where the boundary
coincides with a fixed wall. However, this condition is not always realistic and gives rise
to the phenomenon of strong boundary layers in general. For example, in immiscible
two-phase flows, the moving contact line is not compatible with the no-slip boundary
condition. Another example occurs when moderate pressure is involved such as in
high altitude aerodynamics (see [21]). More generally, if the wall is smooth, the fluid
can slip on the boundary. In 1827, Navier [19] proposed a slip-with-friction boundary
condition, in which there is a stagnant layer of fluid close to the wall allowing a fluid
to slip, and the tangential component of the strain tensor should be proportional to the
tangential component of the fluid velocity on the boundary:

u ·n = 0 and ((Du)n+αu)ττττ = 0, (1.2)
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where Du = (∇u+∇u�)/2 is the strain tensor, α is a scalar friction function.
Let us introduce some notations. For any vector field v on Γ , we shall denote by

vn the component of v in the direction of n , while we shall denote by vττττ the projection
of v on the tangent hyperplane to Γ . In other words vn = v ·n and vττττ = v− vnn.

Let us now consider any point P on Γ and choose an open neighbourhood W
of P in Γ , small enough, to allow the existence of two families of C 2 curves on W .
The lengths s1 , s2 along each family of curves are a possible system of coordinates in
W . We denote by ττττ1 , ττττ2 the unit tangent vectors to each family of curves. With this
notations, we have vττττ = ∑2

k=1 vkττττk , where v j = v · ττττ j .
The conditions (1.2) are also used for simulations of flows in the presence of rough

boundaries, such as in aerodynamics, or in the case of perforated boundary, which is
called Beavers-Joseph’s law, or still in weather forecasts and in hemodynamics (see
[6]). They are used in particular in the large eddy simulation of turbulent flows.

For a mathematical analysis of the Stokes system satisfying (1.2), the first pionner-
ing paper is due to Solonnikov and Scadilov [22] (with α = 0). More recently, Beirao
da Veiga proved existence results for weak and strong solutions in the L2 setting. How-
ever, we can prove that

2((Du)n)ττττ = ∇ττττ(u ·n)+ (
∂u
∂n

)ττττ −
2

∑
j=1

(
∂n
∂ s j

·uττττ)τ jτ jτ jτ j. (1.3)

On the other hand, we have the following relation:

curlu×n = ∇ττττ (u ·n)− (
∂u
∂n

)ττττ −
2

∑
j=1

(
∂n
∂ s j

·uττττ)τ jτ jτ jτ j, (1.4)

which implies that the boundary condition curlu×n = h is equivalent to the condition
2((Du)n)ττττ +2∑2

j=1(
∂n
∂ s j

·uττττ)τ jτ jτ jτ j = −h when u ·n = 0 on Γ . Comparing with (1.2), the

following boundary condition

u ·n = 0 and curlu×n = 0, (1.5)

is in fact a slip-Navier boundary condition type. For more details concerning the re-
alationship between slip-Navier boundary condition and the boundary conditions (1.5),
the interested reader is referred to [7], [10] and [18].

The main propose of this paper is to develop a Lp theory for 1 < p < ∞ to deal
with the well-posedness for the the stationary Stokes equations with the boundary con-
ditions (1.5). The motivation of our study comes from the remark that the slip-Navier
boundary condition is widely accepted in many applications and numerical studies. An-
other motivation is from the fact that, so far, the above problemMitrea-pipher has been
attacked mainly within the framework of the Hilbert spaces (see [14]). However, in the
case p �= 2, the L p(Ω) theory has yet not fully developed. So, in this paper we apply
many of the techniques used when p = 2, add critical new techniques for p �= 2 and
provide a general framework for developing the L p(Ω) theory of the Stokes problem
with the boundary conditions (1.5).
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Stokes problem with the boundary conditions (1.5) was studied by Conca, Murat
and Pironneau (cf. [14] and [13]) in a more general framework. They supposed that
the boundary Γ is divised into three parts and that the boundary conditions was of
three different types, where the boundary condition (1.5) was given on a portion of the
boundary. They proved the existence of variational solutions u and show that they were
solutions of the initial Stokes problem. In particular, they suppose that Laplacian was in
L2(Ω) without specifying any conditions on the data which would imply this regularity.
Next, this studies were completed by Bernard [8], where he showed that if the pressure,
which is a given data on a portion of the boundary, is more regular, the variational
solution u of the Stokes problem satisfies Δu∈ L2(Ω) and the corresponding boundary
conditions. He generalized this result and he proved a regularity Wm,r(Ω) , m ∈ N ,
m � 2, r � 2 for the stationary Stokes problem and also the regularity W 2,r(Ω) , r � 2
for the time-dependent Stokes problem in [9].

Unlike the Stokes problem with Dirichlet boundary conditions, the boundary con-
ditions (1.5) permit the pressure to be completely decoupled to the velocity as a solution
of a certain Neumann problem. Moreover, as we shall remark, the pressure can be con-
stant under certain assumptions. So, by setting F = f −∇π , we obtain a system of
equations involving only the velocity variable u . That is

−Δu = F and divu = 0 in Ω, (1.6)

with the boundary conditions (1.5). In [12], variational formulations in Hilbert spaces
are proposed for the elliptic problem (1.6) with no divergence contraint on the spaces of
test functions. This problem is also studied by [16], where their method is based on the
theory of Agmon-Douglis-Nirenberg and they consider a domain with C ∞−boundary.

In Section 2, we introduce some notations and the functional spaces, besides we
derive some basic Sobolev inequalities for vector fields.

In Section 3, we propose a characterization of the vector potentials related to the
geometrical properties of the domain Ω . To this effects, non homogeneous conditions
on the boundary values of the vector potential on Γ are imposed, together with the no
divergence-free condition. These results are known in the Hilbertian case, see for in-
stance [1] for the case of homogeneous boundary conditions. This work is an extention
to the non Hilbertian case and to nonhomogeneous boundary conditions in Lp theory,
usualy useful for solving problems with the curl curl operator. This leads to establish an
Inf-Sup condition which plays a crucial role in the proof of the solvability of the elliptic
problem (1.5)-(1.6). Based on this, in Section 4, we conclude with the main result of
this paper related to the well-posedness of the Stokes problem (1.1)-(1.5). We prove
the existence and the uniqueness of weak solutions which we shall call strong solutions
under more regular assumptions on the datas. Next, we state results related to the very
weak solution when irregular datas are considered. For this, we need some preliminary
results including density lemmas, characterization of dual spaces and a trace’s result for
very weak solutions.

Note that here, we are interested only in the Stokes equations and this may be
applied to the Navier-Stokes equations.
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2. Preliminaries

Let Ω be a bounded open connected set of R
3 of class C 1,1 whith boundary Γ .

Let Γi , 0 � i � I , denote the connected components of the boundary Γ , Γ0 being the
exterior boundary of Ω . We also fix a smooth open set O with a connected boundary
(a ball, for instance), such that Ω is contained in O , and we denote by Ωi , 0 � i � I ,
the connected component of O\Ω with boundary Γi (Γ0 ∪ ∂O for i = 0) . We do not
assume that Ω is simply-connected but we suppose that there exist J connected open
surfaces Σ j , 1 � j � J , called ’cuts’, contained in Ω , such that each surface Σ j is
an open subset of a smooth manifold, the boundary of Σ j is contained in Γ . The
intersection Σi ∩Σ j is empty for i �= j , and finally the open set Ω◦ = Ω \∪J

j=1Σ j is

simply-connected and pseudo-C 1,1 (see [5] and [20]). We denote by [·] j the jump of
a function over Σ j , i.e. the differences of the traces, for 1 � j � J and by 〈·, ·〉X ,X ′ the
duality product between a space X and X ′ . We shall use bold characters for the vectors
or the vector spaces and the non-bold characters for the scalars. The letter C denotes a
constant that is not necessarily the same from an occurrences. Finally, for any function
q in W 1,p(Ω◦) , gradq is the gradient of q in the sense of distributions in D ′(Ω◦) .
It belongs to Lp(Ω◦) and therefore can be extended to Lp(Ω) . In order to distinguish
this extension from the gradient of q in D ′(Ω) , we denote it by g̃radq . We define the
spaces:

H p(curl,Ω) = {v ∈ Lp(Ω); curl v ∈ Lp(Ω)} ,

H p(div,Ω) = {v ∈ Lp(Ω); div v ∈ Lp(Ω)} ,

X p(Ω) = H p(curl,Ω)∩H p(div,Ω),

equipped with the graph norm. now, we also define their subspaces:

H p
0 (curl,Ω) = {v ∈ H p(curl,Ω); v×n = 0 on Γ} ,

H p
0 (div,Ω) = {v ∈ H p(div,Ω); v ·n = 0 on Γ} ,

X p
N(Ω) = {v ∈ X p(Ω); v×n = 0 on Γ} ,

X p
T (Ω) = {v ∈ X p(Ω);v ·n = 0 on Γ} .

Let us state some results which are used throughout this paper. Let us have a look
at the case Ω simply connected (Σ j = /0 , 1 � j � J ). Problem (1.1) with (1.5) has an
equivalent variational formulation for any p . Indeed, if u ∈ V p

T (Ω) is solution of (1.1)
with (1.5), then u ∈ W 1,p(Ω) satisfies:

∀v ∈ V p′
T (Ω),

∫
Ω

curlu · curlvdx = 〈 f , v〉Ω, (2.1)

where

Vp
T (Ω) = {w ∈ Xp

T (Ω); divw = 0 in Ω and 〈w ·n, 1〉Σ j = 0, 1 � j � J}.

Observe that, due to the boundary conditions, we can not take f ∈ W−1,p(Ω) . Then,
we must choose an adequate distribution space for f which is given here by the dual
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space (H p′
0 (div,Ω)′ and this amounts to defining the duality pairing in (2.1). Observe

that (H p′
0 (div,Ω))′ ↪→W−1,p(Ω) and for any f , there exist ψψψψ ∈Lp(Ω) and χ ∈ Lp(Ω)

such that (see [2])
f = ψψψψ+∇χ .

First, recall the case when p = 2, for any v ∈ V 2
T (Ω) , we have:

‖v‖H1(Ω) � C‖curlv‖L2(Ω). (2.2)

This equivalence of the semi-norm ‖curl · ‖L2(Ω) and the full norm ‖ · ‖H1(Ω) and the
Lax-Milgram Lemma allow to prove that problem (2.1) has a unique solution u ∈
H1(Ω) . We point out here that the inequality (2.2) is quite simple for p = 2 while
for p �= 2 and Ω multiply connected, it is not obvious and the situation is different. It
is known that for any vector field with vanishing trace on the boundary, we have for any
1 < p < ∞ and for a bounded open set Ω of R

3 with boundary Γ of class C 1,1 the
following inequality:

‖∇v‖Lp(Ω) � C(‖divv‖Lp(Ω) +‖curlv‖Lp(Ω)
)
. (2.3)

However, in the case of vectors fields with either vanishing tangential components or
vanishing normal components on the boundary, the inequality (2.3) is not true. So,
we are interested in some inequalities of type (2.3), when Ω has arbitrary Betti num-
bers and for vectors fields with vanishing tangential components or vanishing normal
components on the boundary. This is because

Kp
N(Ω) = {v ∈ Lp(Ω), divv = 0, curlv = 0 in Ω and v×n = 0 on Γ},

Kp
T (Ω) = {v ∈ Lp(Ω), divv = 0, curlv = 0 in Ω and v ·n = 0 on Γ}

have dimensions the first Betti number I � 1 and second Betti number J � 1 respec-
tively. As shown in [1, Proposition 3.14], when p = 2, we can prove for any 1 < p <∞
that the space K p

T (Ω) is spanned by the functions g̃radqT
j , 1 � j � J , where each

qT
j ∈W 1,p(Ω◦) is unique up to an additive constant and satisfies:⎧⎨⎩ΔqT

j = 0 in Ω◦, ∂n qT
j = 0 onΓ,

[
qT

j

]
k = constant,

[∂n qT
j ]k = 0; 1 � k � J and

〈
∂n qT

j , 1
〉
Σk

= δ j k, 1 � k � J.

We note that K p
T (Ω) = {0} if J = 0. For more details see [5] and [20]. Similarly, we

can prove that the space K p
N(Ω) is I and that it is spanned by the functions gradqN

i ,
1 � i � I , where each qN

i ∈W 1,p(Ω) is the unique solution to the problem:{
ΔqN

i = 0 in Ω, qN
i = 0 in Γ0, qN

i = constant in Γk,

〈∂n qN
i , 1〉Γ0 = −1 and 〈∂n qN

i , 1〉Γk = δi k, 1 � k � I.

We note that if Γ= Γ0 , then K p
N(Ω) = {0} .
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By means of the integral representation formula for v∈W 1,p(Ω) and by introduc-
ing the both integral operators defined by:

T λ (x) = − 1
2π

∫
Γ
λ (ξξξξ )

∂
∂n

|x− ξξξξ |−1 dσξξξξ ,

Rλλλλ (x) =
1
2π

∫
Γ
curl (

λλλλ (ξξξξ )
|x− ξξξξ | )×ndσξξξξ ,

we can prove, for every 1 < p <∞ , the following first inequality concerning tangential
vector fields:

‖∇v‖Lp(Ω) � C(‖divv‖Lp(Ω) +‖curlv‖Lp(Ω) +
J

∑
j=1

|〈v ·n, 1〉Σ j |), (2.4)

and the second one concernes the normal vector fields:

‖∇v‖Lp(Ω) � C(‖divv‖Lp(Ω) +‖curlv‖Lp(Ω) +
I

∑
i=1

|〈v ·n, 1〉Γi |). (2.5)

Von Wahl [23] obtained (2.4) and (2.5) without any flux through the cuts Σ j (1 �
j � J ) and the components Γi (1 � i � I ) on the right hand sides. So, he proved that
such homogeneous estimates hold if and only if I = 0, i.e. Ω is simply connected in the
case of v×n = 0 , and if and only if J = 0, i.e. Ω has only one connected component
of the boundary Γ in the case u ·n = 0 on Γ , respectively. In [11], the authors prove
Cα -estimates of type (2.4) and (2.5) in a bounded smooth open set.

Using (2.4) and (2.5), the density of W 1,p(Ω)∩X p
N(Ω) in X p

N(Ω) and the density
of W 1,p(Ω)∩X p

T (Ω) in X p
T (Ω) , we obtain the following continuous embeddings:

X p
N(Ω) ↪→ W 1,p(Ω) and X p

T (Ω) ↪→ W 1,p(Ω).

In order to consider the case of nonhomogeneous boundary conditions, we intro-
duce the following spaces:

X1,p(Ω) = {v ∈ Lp(Ω); divv ∈ Lp(Ω), curlv ∈ L p(Ω), v ·n ∈ W 1− 1
p ,p(Γ)}

and

Y 1,p(Ω) = {v ∈ Lp(Ω); divv ∈W p(Ω), curlv ∈ L p(Ω), v×n ∈ W 1− 1
p ,p(Ω)}.

THEOREM 2.1. The spaces X1,p(Ω) and Y1,p(Ω) are both continuously imbed-
ded in W1,p(Ω):
i) any v in X1,p(Ω) satisfies

‖v‖W1,p(Ω) � C
(‖v‖Lp(Ω) +‖curlv‖Lp(Ω) +‖divv‖Lp(Ω) +‖v ·n‖

W1− 1
p ,p(Γ)

)
;

ii) any v in Y1,p(Ω) satisfies

‖v‖W1,p(Ω) � C
(
‖v‖Lp(Ω) +‖curlv‖Lp(Ω) +‖divv‖Lp(Ω) +‖v×n‖

W1− 1
p ,p(Γ)

)
.
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Now, due to the Peetre-Tartar Theorem, we deduce the following first Poincaré’s
inequality for every function u ∈ W 1,p(Ω) with u×n = 0 on Γ :

‖w‖Lp(Ω) � C(‖curlw‖Lp(Ω) +‖divw‖Lp(Ω) +
I

∑
i=1

|〈w ·n, 1〉Γi |)

and a second one for every function u ∈ W 1,p(Ω) with u ·n = 0 on Γ :

‖w‖Lp(Ω) � C(‖curlw‖Lp(Ω) +‖divw‖Lp(Ω) +
J

∑
j=1

|〈w ·n, 1〉Σj |).

Moreover, we shall show the corresponding estimates for v in higher order Sobolev
spaces Wm,p(Ω) with m ∈ N

∗ via divu and curlu when v×n or v ·n does not vanish
on Γ . For example, when m = 2, we prove the following inequalities (see [5] and [20]):

‖v‖W2,p(Ω) � C
(‖v‖Lp(Ω) +‖curlv‖W 1,p(Ω) +‖divv‖W 1,p(Ω) +‖v ·n‖

W 1− 1
p ,p(Γ)

)
,

‖v‖W 2,p(Ω) � C
(‖v‖Lp(Ω) +‖curlv‖W 1,p(Ω) +‖divv‖W 1,p(Ω) +‖v×n‖

W 1− 1
p ,p(Γ)

)
,

where we use the properties of derivatives on the boundary Γ . These inequalities will
be useful in order to prove regularity results of solution of the Stokes problem and
elliptic problems that we will solve.

3. Vector potentilas with non homogeneous boundary conditions

This section relies on some results concerning vector potentials with non homoge-
neous boundary conditions. So we prove that a divergence-free vector field is the curl
of a divergence-free vector field called vector potential, satisfying two kinds of non ho-
mogeneous boundary conditions. We also prove the existence of other types of vector
potentials which no longer divergence-free. These results are of great importance for
the study of the Stokes equation with different boundary conditions. First, we state the
following result which is going to be useful for us in the sequel.

LEMMA 3.1. A vector field u in H p(div,Ω) satisfies

divu = 0 in Ω and 〈u ·n, 1〉Γi
= 0, 0 � i � I, (3.1)

if and only if there exists a vector potential ψψψψ0 in W1, p(Ω) such that

u = curlψψψψ0. (3.2)

Moreover, we can choose ψ0ψ0ψ0ψ0 such that divψψψψ0 = 0 and we have the estimate

‖ψψψψ0‖W1,p(Ω) � C‖u‖Lp(Ω), (3.3)

where C > 0 depends only on p and Ω .
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Proof. 1. The necessity of conditions (3.1) can be established exactly with the
same arguments as in [1].

2. Conversely, let u be any function satisfying (3.1). The idea is to extend u to the
whole space so that the extended function ũ belongs to Lp(R3) , is divergence-free and
has a compact support. Then, it will be easy to construct its stream function by means
of the fundamental solution of the Laplacian. Let then χ0 in W 1,p(Ω) be the unique
solution up to an additive constant of the following Neumann problem

−Δχ0 = 0 in Ω0 and ∂nχ0 = u ·n on Γ0, ∂nχ0 = 0 on ∂O,

(see the introduction for the notations), and let χi ∈ W 1,p(Ω) with 1 � i � I , be the
unique solution up to an additive constant of the problem:

−Δχi = 0 in Ωi and ∂nχi = u ·n on Γi,

with the estimate:
‖χi‖W 1,p(Ωi) � C‖u‖Lp(Ω),

and where n denotes the unit outward normal to Ω and O . Now we can extend u as
follows

ũ =

⎧⎪⎨⎪⎩
u in Ω,

gradχi in Ωi, 0 � i � I,

0 in R
3\O.

Clearly, ũ belongs to H p(div, R
3) and is divergence-free in R

3 . The function ψψψψ0 =
curl(E ∗ ũ) , with E the fundamental solution of the laplacian, satisfies

curlψψψψ0 = ũ and divψψψψ0 = 0 in R
3.

Applying the Calderón Zygmund inequality, we obtain

‖∇ψψψψ0‖Lp(R3) � C‖Δ(E ∗ ũ)‖Lp(R3) � C‖ũ‖Lp(R3) � C‖u‖Lp(Ω).

Due to [3, Proposition 2.10], ψψψψ0|Ω belongs to W 1,p(Ω) . As a consequence, ψψψψ0 satis-
fies the condition (3.2) and the estimate (3.3). �

REMARK 3.2. A detailed proof of the case p = 2 can be found in [1, Lemma 3.5]
and [15, Theorem 3.4] by using the Fourier transformation.

Our first theorem deals with nonhomogeneous normal boundary condition.

THEOREM 3.3. Let g ∈W −1/p,p(Γ) and χ ∈ Lp(Ω) satisfies∫
Ω
χ dx = 〈g, 1〉Γ. (3.4)

A function u ∈ Lp(Ω) satisfies

divu = 0 in Ω and 〈u ·n, 1〉Γi
= 0, 1 � i � I, (3.5)
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if and only if there exists a vector potential ψψψψ in Lp(Ω) such that

u = curlψψψψ and divψψψψ = χ in Ω,

ψψψψ ·n = g on Γ,

〈ψψψψ ·n, 1〉Σ j
= 0 for any 1 � j � J.

(3.6)

This function ψψψψ is unique and we have the estimate:

‖ψψψψ‖Lp(Ω) � C
(‖u‖Lp(Ω) +‖g‖W−1/p,p(Γ) +‖χ‖Lp(Ω)

)
. (3.7)

If moreover g ∈W 1−1/p,p(Γ) , then ψψψψ ∈ W1,p(Ω) with the corresponding estimate.

Proof. The uniqueness and the necessity of conditions (3.5) can be established
exactly as in [1]. Next, with a function u ∈ Lp(Ω) satisfying (3.5), we first construct
the vector potential ψψψψ1 satisfying:

u = curlψψψψ1 and divψψψψ1 = 0 in Ω,

ψψψψ1 ·n = 0 on Γ, 〈ψψψψ1 ·n, 1〉Σj
= 0, 1 � j � J.

(3.8)

According to Lemma 3.1, there exists ψψψψ0 ∈ W 1,p(Ω) with divψψψψ0 = 0 in Ω , such that
u = curlψψψψ0 and with

‖ψψψψ0‖W1,p(Ω) � C‖u‖Lp(Ω).

We introduce the solution χ in W 2,p(Ω) , unique up to an additive constant, of the
problem:

−Δχ = 0 in Ω, and ∂n χ = ψψψψ0 ·n onΓ,

which satisfies the estimate

‖χ‖W 2,p(Ω)/R
� C‖ψψψψ0 ·n‖

W
1− 1

p ,p(Γ)
.

Then, we set ψψψψ1 = ψψψψ0 +∇(θ −χ) , with θ ∈W 1,p(Ω) solution, up to an additive
constant, of the Neumann problem:

Δθ = χ in Ω and
∂ θ
∂ n

= g on Γ,

with the estimate:

‖θ‖W 1,p(Ω)/R
� C

(‖χ‖Lp(Ω) +‖g‖W−1/p,p(Γ)

)
. (3.9)

Finally, the function

ψ̃ψψψ = ψψψψ−
J

∑
j=1

〈ψψψψ ·n, 1〉Σ j g̃radqT
j .

belongs to Lp(Ω) and satisfies (3.6).
We suppose now that g ∈W 1−1/p,p(Γ) . Applying Theorem 2.1, we have immedi-

ately ψ̃ψψψ ∈ W 1,p(Ω) . �
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REMARK 3.4. If Ω is Lipschitz and simply connected, the first part of the pre-
vious theorem was proved by Mitrea [17] if 3/2− ε � p � 2+ ε for some ε strictly
positive.

As a consequence, we can prove the following Inf-Sup condition.

COROLLARY 3.5. The following Inf-Sup condition holds: there exists a constant
β > 0 , such that

inf
ϕϕϕϕ∈Vp′

T (Ω)
ϕϕϕϕ �=0

sup
ξξξξ∈Vp

T (Ω)
ξξξξ �=0

∫
Ω curlξξξξ · curlϕϕϕϕ dx
‖ξξξξ‖Xp

T (Ω)‖ϕϕϕϕ‖Xp′
T (Ω)

� β . (3.10)

Proof. The proof is based on the decomposition of Lp(Ω) into the direct sum
of solenoidal vector fields and gradients of scalar functions together with the result of
Lemma 3.1. �

Next, we give the corresponding result of vector potentials in the case of non ho-
mogeneous normal boundary condition. As previously, we first establish the existence
of a divergence free vector potential.

THEOREM 3.6. Let u ∈ Lp(Ω) and g such that g×n ∈ W−1/p,p(Γ) . Then⎧⎪⎨⎪⎩
divu = 0 in Ω,

u ·n = divΓ(g×n) on Γ,

〈u ·n, 1〉Σ j
= 0, 1 � j � J,

(3.11)

if and only if there exists a vector potential ψψψψ in Lp(Ω) such that

u = curlψψψψ and divψψψψ = 0 in Ω,

ψψψψ×n = g×n on Γ,

〈ψψψψ ·n, 1〉Γi
= 0 for any 1 � i � I.

(3.12)

This function ψψψψ is unique and we have the estimate:

‖ψψψψ‖Lp(Ω) � C
(‖u‖Lp(Ω) +‖g×n‖W−1/p,p(Γ)

)
. (3.13)

If moreover g×n∈W1−1/p,p(Γ) , then ψψψψ ∈W1,p(Ω) with the corresponding estimate.

Proof. THE FIRST STEP: NECESSARY CONDITIONS. Let us show that (3.12)
implies (3.11). Clearly, div(curlψψψψ) = 0. Next, we must check that u ·n = divΓ(g×n)
on Γ and that 〈u ·n, 1〉Σ j

= 0, for any 1 � j � J . Since ψψψψ ∈ Lp(Ω) and curlψψψψ ∈
Lp(Ω) , we have for any χ in W 2,p′(Ω) :∫

Ω
curlψψψψ ·gradχ dx = 〈u ·n, χ〉W −1/p,p(Γ)×W 1−1/p′,p′ (Γ),∫

Ω
curlψψψψ ·gradχ dx = −〈ψψψψ×n, gradχ〉W−1/p,p(Γ)×W 1−1/p′,p′ (Γ)
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= 〈divΓ(ψψψψ×n), χ〉W −1−1/p,p(Γ)×W 2−1/p′,p′ (Γ).

As for any function χ in W 2,p′(Ω) ,

〈u ·n, χ〉Γ = 〈divΓ(g×n), χ〉Γ,

we deduce the trace’s result. The necessity of the last condition in (3.11) can be estab-
lished exactly with the same arguments as in [1].

THE SECOND STEP: UNIQUENESS. The proof is simple consequence of the char-
acterization of the kernel K p

N(Ω) .

THE THIRD STEP: EXISTENCE. Let u ∈ L p(Ω) be any function satisfying (3.11).
According to Lemma 3.1, there exists ψψψψ0 ∈ W 1,p(Ω) such that

u = curlψψψψ0 and divψψψψ0 = 0 in Ω.

Using Lemma 3.5, the following problem: find ξξξξ ∈ V p
T (Ω) such that for any ϕϕϕϕ ∈

Vp′
T (Ω)

∫
Ω

curlξξξξ · curlϕϕϕϕ dx =
∫
Ω
ψψψψ0 · curlϕϕϕϕ dx−

∫
Ω

curlψψψψ0 ·ϕϕϕϕ dx

− < (g×n), ϕϕϕϕ >Γ, (3.14)

has a unique solution.
Note that the right-hand side defines an element of (V p

T (Ω))′ . We want to extend

(3.14) to any test function ϕ̃ϕϕϕ in Xp′
T (Ω) . Let χ in W 2,p′(Ω) satisfying:

Δχ = div ϕ̃ϕϕϕ in Ω and
∂ χ
∂n

= 0 onΓ, (3.15)

and ϕϕϕϕ ∈ VVVV p′
T (Ω) satisfying:

ϕϕϕϕ = ϕ̃ϕϕϕ−gradχ−
J

∑
j=1

〈(ϕ̃ϕϕϕ−gradχ) ·n, 1〉Σ j g̃radqT
j . (3.16)

Observe that∫
Ω

curlψψψψ0 ·gradχ dx =
∫
Ω

u ·gradχ dx = 〈divΓ(g×n), χ〉Γ = −〈g×n, ∇χ〉Γ,

and we obtain∫
Ω

curlψψψψ0 · g̃radqT
j dx =

∫
Ω◦

u ·gradqT
j dx

=
J

∑
k=1

[qT
j ]k〈u ·n, 1〉Σk + 〈u ·n, qT

j 〉Γ
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= 〈g×n, ∇qT
j 〉Γ.

Hence, (3.14) becomes: find ξξξξ ∈ V p
T (Ω) such that for any ϕ̃ϕϕϕ ∈ Xp′

T (Ω) :∫
Ω

curlξξξξ · curl ϕ̃ϕϕϕ dx =
∫
Ω
ψψψψ0 · curl ϕ̃ϕϕϕ dx−

∫
Ω

curlψψψψ0 · ϕ̃ϕϕϕ dx−〈g×n, ϕ̃ϕϕϕ〉Γ. (3.17)

Then, every solution of (3.17) also solves the problem⎧⎪⎨⎪⎩
−Δξξξξ = 0, divξξξξ = 0 in Ω,

ξξξξ ·n = 0, (ψψψψ0 − curlξξξξ )×n = g×n onΓ,

〈ξξξξ ·n, 1〉Σ j = 0, 1 � j � J.

Finally, we set

ψψψψ = ψψψψ0 − curlξξξξ −
I

∑
i=1

〈(ψψψψ0 − curlξξξξ ) ·n, 1〉Γi gradqN
i ,

and it follows that the function ψψψψ belongs to Lp(Ω) and satisfies (3.12) and the estimate
(3.13). Observe that ξξξξ ∈W 2,p(Ω) when g×n∈W 1−1/p,p(Γ) and then ψψψψ ∈W 1,p(Ω) .
�

Here also, we can extend the previous result for the case where the divergence of
the vector potentials does not vanish.

COROLLARY 3.7. Let g×n ∈ W−1/p,p(Γ) and χ ∈W −1,p(Ω) . A function u ∈
Lp(Ω) satisfies (3.11) if and only if there exists a vector potential ψψψψ in Lp(Ω) such
that

u = curlψψψψ and divψψψψ = χ in Ω,

ψψψψ×n = g×n on Γ,

〈ψψψψ ·n, 1〉Γi
= 0 for any 1 � i � I.

(3.18)

This function ψψψψ is unique and we have the estimate:

‖ψψψψ‖Lp(Ω) � C
(‖u‖Lp(Ω) +‖g×n‖W−1/p,p(Γ) +‖χ‖W−1,p(Ω)

)
. (3.19)

If moreover g×n ∈ W1−1/p,p(Γ) and χ ∈ Lp(Ω) , then ψψψψ ∈ W1,p(Ω) with the corre-
sponding estimate.

Proof. i) Assume that (3.11) holds and let ψψψψ0 denote the function associated with
u by Theorem 3.6. We introduce the unique solution θ ∈W 1,p(Ω) of the problem:

Δθ = χ in Ω and θ = 0 on Γ

satisfying the estimate:
‖θ‖W 1,p(Ω) � C‖χ‖W −1,p(Ω). (3.20)
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Finally, we set ψψψψ = ψψψψ0 +∇θ . It is easy to check that ψψψψ satisfies (3.18) without
the last condition. Finally, the function

ψ̃ψψψ = ψψψψ−
I

∑
i=1

〈ψψψψ ·n, 1〉Γi gradqN
i

is the required function and this concludes the proof.
ii) The uniqueness is a consequence of the characterization of the kernel K p

N(Ω) .

iii) The necessity of conditions (3.11) was established in the proof of Theorem 3.6. �

REMARK 3.8. If Ω is Lipschitz and simply connected, the first part of the previ-
ous theorem was proved by Mitrea [17] for g×n ∈ Lp(Γ) if 3/2− ε � p � 2+ ε , for
some ε strictly positive.

4. Well-posedness of the Stokes equations

In this section we will study the following Stokes equations:

(ST )

⎧⎪⎨⎪⎩
−Δu+∇π = f and divu = 0 in Ω,

u ·n = g and curlu×n = h×n onΓ,

〈u ·n, 1〉Σ j = 0, 1 � j � J.

4.1. Weak solutions

The aim of this subsection is to give a variational formulation of problem (ST )
and prove a theorem of existence and uniqueness of weak solutions.

Let us consider the following space

E p(Ω) = {v ∈ W 1,p(Ω), Δv ∈ [H p′
0 (div, Ω)]′},

which is a Banach space for the norm

‖v‖E p(Ω) = ‖v‖W1,p(Ω) +‖Δv‖
[H p′

0 (div,Ω)]′
.

We have the following preliminary results. We skip the proof because it is classical.

LEMMA 4.1. D(Ω) is dense in E p(Ω) .

As a consequence, we have the following result.

COROLLARY 4.2. The linear mapping γ : v→ curlv|Γ×n defined on D(Ω) can
be extended to a linear continuous mapping

γ : E p(Ω) −→ W− 1
p ,p(Γ).
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Moreover, we have the Green formula: for any v ∈ E p(Ω) and ϕϕϕϕ ∈ X p′
T (Ω) with

divϕϕϕϕ = 0 in Ω ,

−〈Δv, ϕϕϕϕ〉
[H p′

0 (div,Ω)]′×H p′
0 (div,Ω)

=
∫
Ω

curlv · curlϕϕϕϕ dx−〈curlv×n, ϕϕϕϕ〉Γ, (4.1)

where the duality on Γ is defined by 〈·, ·〉Γ = 〈·, ·〉
W− 1

p ,p(Γ)×W
1
p ,p′ (Γ)

.

PROPOSITION 4.3. Let f belongs to Lp(Ω) with div f = 0 in Ω , g ∈W 1− 1
p ,p(Γ)

and h× n ∈ W− 1
p ,p(Γ) verifying the following compatibility conditions: for any v ∈

K p′
T (Ω) , ∫

Ω
f · vdx+ 〈h×n, v〉

W− 1
p ,p(Γ)×W

1
p ,p′ (Γ)

= 0, (4.2)∫
Γ
gdσσσσ = 0, (4.3)

f ·n−divΓ (h×n) = 0 on Γ, (4.4)

where divΓ is the surface divergence on Γ . Then, the problem

(ET )

⎧⎪⎨⎪⎩
−Δξξξξ = f and divξξξξ = 0 in Ω,

ξξξξ ·n = g and curlξξξξ ×n = h×n on Γ,

〈ξξξξ ·n, 1〉Σ j = 0, 1 � j � J,

has a unique solution ξξξξ in W1,p(Ω) satisfying the estimate:

‖ξξξξ ‖W1,p(Ω) � C
{
‖ f‖Lp(Ω) +‖g‖W 1−1/p,p(Γ) +‖h×n‖W−1/p,p(Γ)

}
. (4.5)

Proof. We check separately the existence and the uniqueness and we prove the
necessary conditions (4.2)-(4.4) to establish the existence of a solution of (ET ) .

STEP 1: UNIQUENESS. Let ξξξξ ∈ W 1,p(Ω) be a solution of problem (ET ) with
data f = 0 , g = 0 and h = 0 . The function w = curlξξξξ belongs to Lp(Ω) and satisfies:

divw = 0, curlw = 0 in Ω and w×n = 0 on Γ.

This implies that w ∈ K p
N(Ω) . Thanks to the characterization of the kernel K p

N(Ω) , we
can write:

w =
I

∑
i=1

〈w ·n, 1〉Γi gradqN
i .

So, w ∈ L2(Ω) and∫
Ω
|w|2 dx =

I

∑
i=1

〈w ·n, 1〉Γi

∫
Ω

curlξξξξ ·gradqN
i dx = 0.
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Hence, w is equal to zero and ξξξξ belongs to K p
T (Ω) . Using the characterization of the

kernel K p
T (Ω) and the last condition in (ET ) yields that ξξξξ is also equal to zero. This

yields the uniqueness of the solution of the problem (ET ) .

STEP 2: COMPATIBILITY CONDITIONS. Firstly, let us show that the conditions
(4.3) and (4.4) are necessary. First, we set z = curlξξξξ , with ξξξξ a solution of (ET ) . It is
clear that

∀ϕ ∈W 2,p′(Ω), 〈curlz ·n, ϕ〉Γ = −〈z×n, ∇ϕ〉Γ,
where the bracket denote the duality W −1/p,p(Γ)×W 1/p,p′(Γ) . So that f must satisfy:

〈f ·n, ϕ〉Γ = −〈h×n, ∇ϕ〉Γ = 〈divΓ (h×n), ϕ〉Γ.
This shows that

f ·n−divΓ (h×n) = 0 in the sens of W −1− 1
p ,p(Γ) .

We deduce in fact that divΓ (h×n) belongs to W − 1
p ,p(Γ) and the above equation oc-

curs to the sens of the last space. Next, the fact that
∫
Γ gdσσσσ = 0 is due to divξξξξ = 0

in Ω . Secondly, let us show that the compatibility condition (4.2) is necessary. In
a preliminary step, we lift the boundary condition on ξξξξ · n by solving the Neumann
problem:

(N ) Δθ = 0 in Ω and
∂ θ
∂ n

= g onΓ.

Owing to (4.3), this problem has a solution θ ∈ W 2,p(Ω) , unique up to an additive
constant, satisfying the estimate:

‖θ ‖W 2,p(Ω)/R
� C‖g‖W 1−1/p,p(Γ). (4.6)

The function z = ξξξξ −∇θ satisfies:{
−Δz = f and divz = 0 in Ω,

z ·n = 0 and curlz×n = h×n onΓ.
(4.7)

Immediately, by using (4.1) yields that ∀ϕϕϕϕ ∈ V p′
T (Ω) ,∫

Ω
curlz · curlϕϕϕϕ dx =

∫
Ω

f ·ϕϕϕϕ dx+ 〈h×n, ϕϕϕϕ 〉
W− 1

p ,p(Γ)×W
1
p ,p′ (Γ)

, (4.8)

and we deduce the compatibility condition (4.2).

STEP 3: EXISTENCE. If we prove that the problem (4.7) has a unique solution
z ∈ W 1,p(Ω) , then ξξξξ = z +∇θ ∈ W 1,p(Ω) is the required solution of (ET ) . As a
first step, we check that the problem (4.8) is well-posed, without referring to the initial
problem (4.7). We know from Lemma 3.5, that the problem (4.8) satisfies the Inf-Sup
condition (3.10). So, it has a unique solution z ∈ Vp

T (Ω) ⊂ W 1,p(Ω) since the right-

hand sides defines an element of (Vp′
T (Ω))′ . Next, we want to extend (4.8) to any
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test function ϕ̃ϕϕϕ in Xp′
T (Ω) . We consider the solution χ in W 1,p′(Ω) , unique up to an

additive constant, of the Neumann problem:

Δχ = div ϕ̃ϕϕϕ in Ω and
∂ χ
∂n

= 0 onΓ, (4.9)

and we set

ϕϕϕϕ = ϕ̃ϕϕϕ−gradχ−
J

∑
j=1

〈(ϕ̃ϕϕϕ−gradχ) ·n, 1〉Σ j g̃radqT
j . (4.10)

Observe that ϕϕϕϕ belongs to Vp′
T (Ω) and curlϕϕϕϕ = curl ϕ̃ϕϕϕ . Moreover, using the compat-

ibility conditions (4.2) and (4.4), we obtain:

∀χ ∈W 1,p′(Ω),
∫
Ω

f ·∇χ dx+ 〈h×n, ∇χ 〉Γ = 〈f ·n−divΓ (h×n), χ〉Γ = 0,

and for 1 � j � J , ∫
Ω

f · g̃radqT
j dx+ 〈h×n, g̃radqT

j 〉Γ = 0.

So, there exists a unique solution ξξξξ ∈ V p
T (Ω) such that

∀ϕ̃ϕϕϕ ∈ X p′
T (Ω),

∫
Ω

curlξξξξ · curl ϕ̃ϕϕϕ dx =
∫
Ω

f · ϕ̃ϕϕϕ dx+ 〈h×n, ϕ̃ϕϕϕ 〉Γ. (4.11)

Then,
curlcurlξξξξ = f in Ω.

Since ξξξξ belongs to the space Vp
T (Ω) we have divξξξξ = 0 in Ω , ξξξξ · n = 0 on Γ and

〈ξξξξ ·n, 1〉Σ j = 0, 1 � j � J . Then, it remains to verify the boundary condition

curlξξξξ ×n = h×n on Γ.

We multiply the equation −Δξξξξ = f in Ω by ϕϕϕϕ ∈ X p′
T (Ω) , we integrate on Ω and we

compare with (4.11). Consequently, for any ϕϕϕϕ ∈ Xp′
T (Ω) we obtain:

〈curlξξξξ ×n, ϕϕϕϕ 〉Γ = 〈h×n, ϕϕϕϕ 〉Γ.

Let now μμμμ any element of the space W
1− 1

p′ ,p
′
(Γ) . So, there exists an element ϕϕϕϕ of

W 1,p′(Ω) such that ϕϕϕϕ = μμμμ t on Γ , where μμμμ t is the tangential component of μμμμ on Γ . It

is clear that ϕϕϕϕ belongs to Xp′
T (Ω) and

〈curlξξξξ ×n,μμμμ〉Γ−〈h×n,μμμμ〉Γ = 〈curlξξξξ ×n,μμμμ t〉Γ−〈h×n,μμμμ t〉Γ
= 〈curlξξξξ ×n,ϕϕϕϕ〉Γ−〈h×n,ϕϕϕϕ〉Γ
= 0.

This implies that curlξξξξ ×n = h×n on Γ and then ξξξξ is a solution of problem (4.7)
which satisfies the estimate (4.5). �

We now can solve the Stokes problem (ST ) .
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THEOREM 4.4. (Weak solutions for (ST)) Let

f ∈ [H p′
0 (div,Ω)]′, g ∈W 1− 1

p ,p(Γ), h×n ∈ W− 1
p ,p(Γ) (4.12)

and verifying the compatibility conditions (4.2)-(4.3). Then, the Stokes problem (ST )
has a unique solution (u , π) ∈ W1,p(Ω)×Lp(Ω)/R satisfying the estimate:

‖u‖W1,p(Ω) +‖π‖Lp(Ω)/R �
(‖ f‖

(H p′
0 (div,Ω))′

+‖g‖
W

1− 1
p ,p(Γ)

+‖h×n‖
W− 1

p ,p(Γ)

)
. (4.13)

Proof. STEP 1: UNIQUENESS. Let (u, π) be a solution of (ST ) with data f = 0 ,
g = 0 and h = 0 . Since Δu ·n = 0 on Γ , we find that π satisfies:

Δπ = 0 in Ω and
∂ π
∂ n

= 0 on Γ.

We deduce that π = constant in Ω and this implies the uniqueness up to an additive
constant of the pressure. So, u is a solution of a problem of type of (ET ) still with data
f = 0 , g = 0 and h = 0 . Using the same uniqueness argument in Proposition 4.3, we
check that u is equal to zero and this yields the uniqueness of the solution of problem
(ST ) .

STEP 2: COMPATIBILITY CONDITIONS. We note that condition (4.3) is necessary,
because divu = 0 in Ω . Now, let us justify the necessary of condition (4.2). Before,
using the solution θ ∈W 2,p(Ω) of the Neumann problem (N ) , we lift the boundary
condition on u ·n . Thus, the function z = u−∇θ satisfies:⎧⎪⎨⎪⎩

−Δz+∇π = f and divz = 0 in

Omega,

z ·n = 0 and curlz×n = h×n onΓ.

(4.14)

It is easy to prove that the function z is also solution of (4.8) where we replace the
integral

∫
Ω f ·ϕϕϕϕ dx by the brackets

〈·, ·〉
[H p′

0 (div,Ω)]′×H p′
0 (div,Ω)

.

As a consequence, the compatibility condition (4.2) comes from (4.8) by taking ϕϕϕϕ ∈
K p′

T (Ω) .
STEP 3: EXISTENCE. The proof is similar to that of Proposition 4.3. We know

that problem (4.8) has a unique solution z ∈ V p
T (Ω) satisfying the estimate:

‖z‖W 1,p(Ω) � C{‖f‖
[H p′

0 (div,Ω)]′
+‖h×n‖W−1/p,p(Γ)}. (4.15)

Next, we want to extend (4.8) to any test function in X p′
T (Ω) with div ϕ̃ϕϕϕ = 0 in Ω . For

any function ϕ̃ϕϕϕ ∈ X p′
T (Ω) with div ϕ̃ϕϕϕ = 0 in Ω , we set
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ϕϕϕϕ = ϕ̃ϕϕϕ−
J

∑
j=1

〈ϕϕϕϕ ·n, 1〉Σ j g̃radqT
j .

It is clear that ϕϕϕϕ belongs to V p′
T (Ω) . Using the compatibility condition (4.2), for any

ϕ̃ϕϕϕ ∈ X p′
T (Ω) with div ϕ̃ϕϕϕ = 0 in Ω , we have:

∫
Ω

curlz · curl ϕ̃ϕϕϕ dx = 〈 f , ϕ̃ϕϕϕ 〉
(H p′

0 (div,Ω))′×H p′
0 (div,Ω)

−〈h×n, ϕ̃ϕϕϕ 〉
W− 1

p ,p(Γ)×W
1
p ,p′ (Γ)

. (4.16)

Taking ϕ̃ϕϕϕ ∈ Dσ (Ω) as the test function in (4.16), we obtain:

〈−Δz− f , ϕ̃ϕϕϕ〉(D(Ω))′×D(Ω) = 0.

By De Rham theorem, there exists a function π ∈ Lp(Ω) such that

−Δz+∇π = f in Ω.

Moreover, by the fact that z belongs to the space V p
T (Ω) we have divz = 0 in Ω ,

z ·n = 0 on Γ and 〈z ·n, 1〉Σ j = 0, 1 � j � J . The remainder boundary condition

curlz×n = h×n on Γ

is implicitly contained in (4.16) and can be derived by observing that since f and ∇π
are two elements of [H p′

0 (div,Ω)]′ , it is the same for Δz . Otherwise, the space Dσ (Ω)
of divergence free functions of D(Ω) is dense in the subspace of H p′

0 (div,Ω) with

divergence free, it is clear then that for any ϕϕϕϕ ∈ H p′
0 (div, Ω) with divϕϕϕϕ = 0:

〈∇π , ϕϕϕϕ〉
[H p′

0 (div,Ω)]′×H p′
0 (div,Ω)

= 0.

As a consequence, the pair (z, π) ∈ W 1,p(Ω)× Lp(Ω)/R is the unique solution of
the problem (4.14). Finally (u = z +∇θ , π) ∈ W 1,p(Ω)× Lp(Ω)/R is the unique
solution of the problem (ST ) , where θ ∈ W 2,p(Ω) is solution of the problem (N )
.The estimate (4.13) is easily derived from the construction of (u, π) . �

REMARK 4.5. Observe that if we suppose in Theorem 4.4 that f ∈ L p(Ω) with
div f = 0 in Ω and we add the compatibility condition (4.4), then the pressure π is
constant. Indeed, from the first equation in the Stokes problem (ST ) , we obtain that

Δπ = 0 in Ω and
∂ π
∂n

= f ·n−divΓ (h×n) = 0 on Γ.

This implies that π is a constant and the Stokes problem (ST ) is nothing other than
problem (ET ) .
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REMARK 4.6. We can also solve the Stokes problem when the divergence opera-
tor does not vanish and it is a given function. With the same assumptions Theorem 4.4,
with χ ∈ Lp(Ω) , the problem:⎧⎪⎨⎪⎩

−Δu+∇π = f and divu = χ in Ω,

u ·n = g and curlu×n = h×n onΓ,

〈u ·n, 1〉Σ j = 0, 1 � j � J,

(4.17)

has a unique solution (u , π) ∈ W 1,p(Ω)×Lp(Ω)/R .

4.2. Strong solutions

We prove now existence of strong solutions (u, π) ∈ W 2,p(Ω)×W 1,p(Ω) for the
Stokes problem (ST ) and this will be used in the duality argument needed to show
existence of very weak solutions. The first result that we need is the existence of strong
solutions for (ET ) .

PROPOSITION 4.7. Let

f ∈ Lp(Ω), g ∈W 2− 1
p ,p(Γ), h×n ∈ W1− 1

p ,p(Γ) (4.18)

with div f = 0 in Ω and satisfying the compatibility conditions (4.2)-(4.4). Then, the
solution ξξξξ of the problem (ET ) given by Proposition 4.3 belongs to W2,p(Ω) and
satisfies the estimate:

‖ξξξξ ‖W2,p(Ω) �
(‖ f‖Lp(Ω) +‖g‖

W
2− 1

p ,p(Γ)
+‖h ×n‖

W1− 1
p ,p(Γ)

)
. (4.19)

Proof. Let ξξξξ ∈ W 1,p(Ω) be the solution of problem (ET ) given by Proposition
4.3 and we set z = curlξξξξ . Then, z satisfies:

z ∈ Lp(Ω), curlz ∈ Lp(Ω), divz ∈ Lp(Ω) and z×n ∈ W 1− 1
p ,p(Γ).

It follows from Theorem 2.1 that z belongs to W 1,p(Ω) . Since g ∈ W 2− 1
p ,p(Γ) , we

deduce directly by using again Theorem 2.1 that ξξξξ ∈ W 2,p(Ω) . �

In analogy with Proposition 4.7, we derive the following regularity result for the
solution of the problem (ST) .

THEOREM 4.8. (Strong solutions for (ST)) Let f, g, h satisfying (4.18) and the
compatibility conditions (4.2)-(4.3). Then, the solution (u, π) of problem (ST ) given
by Theorem 4.4 belongs to W2,p(Ω)×W 1,p(Ω) and satisfies the estimate:

‖u‖W2,p(Ω)+‖π‖W 1,p(Ω)/R
�C

(‖ f‖Lp(Ω)+‖g‖
W

2− 1
p ,p(Γ)

+‖h×n‖
W1− 1

p ,p(Γ)

)
. (4.20)
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Proof. We note that under the hypothesis of Theorem 4.8, the data f , g and h also
satisfy the hypothesis of Theorem 4.4. So, this implies that problem (ST ) has a unique
solution (u, π) ∈ W 1,p(Ω)×Lp(Ω)/R . Moreover, since π satisfies:

div(∇π− f) = 0 in Ω, (∇π− f) ·n = −divΓ(h×n) onΓ, (4.21)

then, π ∈W 1,p(Ω) . Now, we set z = curlu . Then, z satisfies:

z ∈ Lp(Ω), divz = 0 in Ω, curlz = ∇π− f ∈ Lp(Ω), z×n = h×n onΓ.

Thanks to Theorem 2.1, the function z belongs to W 1,p(Ω) . As a consequence, due to
Theorem 2.1, the solution u of the problem (ST ) belongs to W 2,p(Ω) . �

COROLLARY 4.9. Let f∈ [H p′
0 (div, Ω)]′ , g = 0 and h = 0 on Γ with f satisfying

the compatibility condition

∀ϕϕϕϕ ∈ K p′
N (Ω), 〈f, ϕϕϕϕ〉

[H p′
0 (div,Ω)]′×H p′

0 (div,Ω)
= 0.

Then, the solution (u, π) of problem (ST ) given by Theorem 4.4 belongs to W2,p(Ω)×
Lp(Ω) .

Proof. Let f be in the dual space of H p′
0 (div,Ω) . We know that there exist

ψψψψ ∈ L p(Ω) and χ0 ∈ Lp(Ω) such that

f = ψψψψ +∇χ0 and ‖ψψψψ‖L p(Ω) +‖χ0‖Lp(Ω) � C‖ f ‖
(H p′

0 (div,Ω))′
.

Since
〈∇χ0, g̃radqT

j 〉(H p′
0 (div,Ω))′×H p′

0 (div,Ω)
= 0

and f satisfy the compatibility condition (4.9), it is the same for ψψψψ . Thanks to Theorem
4.8, there exist u ∈ W 2,p(Ω) and θ ∈W 1,p(Ω) satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δu+∇θ = ψψψψ in Ω,

divu = 0 in Ω,

u ·n = 0, curlu×n = 0, onΓ,

〈u ·n, 1〉Σ j = 0, for any 1 � j � J,

with
‖u‖W2,p(Ω) +‖θ‖W 1,p(Ω)/R

� C‖ψψψψ ‖Lp(Ω).

Then, u and π = θ + χ0 satisfy the announced properties. �

REMARK 4.10. For every f , χ , g , h with

f ∈ Lp(Ω), χ ∈W 1,p(Ω), g ∈W 2−1/p,p(Γ), h×n ∈ W 1−1/p,p(Γ),



ON THE STOKES EQUATIONS 601

with the compatibility condition (4.2) and (4.31), the solution (u, π) of the Stokes
problem (4.17) belongs to W 2,p(Ω)×W 1,p(Ω)/R . Moreover, there exists a constant
C > 0 depending only on p and Ω such that:

‖u‖W 2,p(Ω) +‖π‖W 1,p(Ω)/R
� C

(
‖ f ‖Lp(Ω) +‖χ‖W 1,p(Ω) +‖g‖W 2−1/p,p(Γ)

+‖h×n‖W 1−1/p,p(Γ)

)
. (4.22)

4.3. Very weak solutions

The main new contribution we give in this subsection is the proof of existence for
very weak solutions for the Stokes problem (ST ) , which extends previous results of
[4] for the Dirichlet problem. We consider Lp solutions with 1 < p < ∞ instead of
the simpler Hilbert setting and our approach use the results on strong solutions for the
Stokes problem (ST ) .

With this aim, we introduce the following space:

T p(Ω) =
{
ϕϕϕϕ ∈ H p

0 (div, Ω); divϕϕϕϕ ∈W 1,p
0 (Ω)

}
.

Using classical arguments, we can prove the following results.

LEMMA 4.11. The space DDDD(Ω) is dense in T p(Ω) and for all χ ∈ W −1,p(Ω)
and ϕϕϕϕ ∈ T p′(Ω) , we have:

〈∇χ , ϕϕϕϕ〉(T p′ (Ω))′×T p′ (Ω) = −〈χ , divϕϕϕϕ〉
W −1,p(Ω)×W 1,p′

0 (Ω)
. (4.23)

LEMMA 4.12. A distribution f belongs to (T p(Ω))′ if and only if there exist ψψψψ ∈
Lp′(Ω) and f0 ∈W −1,p′(Ω) , such that

f = ψψψψ+∇ f0.

Moreover, we have the estimate

‖ψψψψ‖Lp′ (Ω) +‖ f0‖W −1,p′ (Ω) � C‖ f‖(T p(Ω))′ . (4.24)

We shall use the space

H p(Δ; Ω) = {v ∈ Lp(Ω); Δv ∈ (T p′(Ω))′},

which is Banach space for the norm:

‖v‖H p(Ω) = ‖v‖Lp(Ω) +‖Δv‖(Tp′ (Ω))′ .

The following lemma will help us to prove a trace result.
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LEMMA 4.13. The space DDDD(Ω) is dense in H p(Δ; Ω) .

We define the space:

Y p
T (Ω) =

{
ϕϕϕϕ ∈ W 2,p(Ω); ϕϕϕϕ ·n = 0, divϕϕϕϕ = 0, curlϕϕϕϕ×n = 0 onΓ

}
,

and we recall the following relations:

divv = divΓ vt + K (v ·n)+
∂ v
∂ n

·n onΓ, (4.25)

∂ v
∂ n

·n =
2

∑
k=1

vk
∂ ττττk

∂ n
·n+

∂ vn

∂ n
onΓ, (4.26)

curlv =
2

∑
j=1

∂ v
∂ s j

× ττττ j +
∂ v
∂ n

×n onΓ. (4.27)

The following lemma proves that the tangential trace of the curl of function v of

Hp(Δ;Ω) belongs to W−1− 1
p ,p(Γ) .

LEMMA 4.14. The mapping γ : u �→ curlu|Γ × n on the space DDDD(Ω) can be
extended by continuity to a linear and continuous mapping still denoted by γ , from

H p(Δ;Ω) into W−1− 1
p ,p(Γ) and we have the following Green formula: for any u ∈

H p(Δ;Ω) and ϕϕϕϕ ∈ Y p′
T (Ω) ,

〈Δu, ϕϕϕϕ〉(T p′ (Ω))′×T p′ (Ω) =
∫
Ω

u ·Δϕϕϕϕ dx+ 〈curlu×n, ϕϕϕϕ〉Γ, (4.28)

where the duality on Γ is given by 〈·, ·〉Γ = 〈·, ·〉
W−1− 1

p ,p(Γ)×W1+1/p,p′ (Γ)
.

Proof. Let u ∈ DDDD(Ω) , then formula (4.28) is valid for any ϕϕϕϕ ∈ Y p′
T (Ω) . Let

μμμμ ∈ W1+1/p,p′(Γ) such that μμμμn = 0 on Γ . Then, there exists a function ϕϕϕϕ ∈ W 2,p′(Ω)
such that ϕϕϕϕt = μμμμ t on Γ . Moreover, using (4.25), we must choose ϕϕϕϕ such that

∂ ϕϕϕϕ
∂ n

·n = −divΓ μμμμ t on Γ ,

in order to obtain divϕϕϕϕ = 0 on Γ . We can also fix
∂ ϕϕϕϕ
∂ n

×n so that we have

curlϕϕϕϕ×n = 0 on Γ .

For this, using (4.27) and the fact that (z×n)×n =−zτ for any vector field z , we must
choose (∂ ϕϕϕϕ

∂ n

)
τ =

2

∑
j=1

(∂ μμμμ t

∂ s j
× ττττ j

)×n.
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As a consequence,

∂ ϕϕϕϕ
∂ n

= −ndivΓ μμμμ t +
2

∑
j=1

(∂ μμμμ t

∂ s j
× ττττ j

)×n

satisfies the two conditions:

divϕϕϕϕ = 0 and curlϕϕϕϕ×n = 0 onΓ.

Let us summarizes. The function ϕϕϕϕ belongs to Y p′
T (Ω) and satisfies:⎧⎪⎨⎪⎩

ϕϕϕϕt = μμμμ t onΓ,
∂ ϕϕϕϕ
∂ n

= −ndivΓ μμμμ t +
2
∑
j=1

(∂ μμμμ t

∂ s j
× ττττ j

)×n onΓ,
(4.29)

such that
‖ϕϕϕϕ‖W2,p(Ω) � C‖μμμμ‖W 1+1/p,p′(Γ). (4.30)

Consequently,∣∣∣〈curlu×n, μμμμ〉Γ
∣∣∣ =

∣∣∣〈curlu×n, ϕϕϕϕt〉Γ
∣∣∣

� ‖u‖Lp(Ω)‖ϕϕϕϕ‖W 2,p′ (Ω) +‖Δu‖(T p′ (Ω))′ ‖ϕϕϕϕ‖T p′ (Ω)

� C‖u‖H p(Δ;Ω)‖ϕϕϕϕ‖W 2,p′ (Ω).

Thus, using (4.30), we obtain for any u ∈ DDDD(Ω) :

‖curlu×n‖
W−1− 1

p ,p(Γ)
� C‖u‖H p(Δ;Ω).

Therefore, the linear continuous mapping γ : u �→ curlu|Γ× n defined on the space
DDDD(Ω) is continuous for the norm of H p(Δ; Ω) . Since DDDD(Ω) is dense in H p(Δ; Ω) ,

then we can extend this mapping from H p(Δ; Ω) into W−1− 1
p ,p(Γ) . �

The main result of this subsection is the following.

THEOREM 4.15. (Very weak solutions for (ST)) Let f , χ , g , and h with

f ∈ (T p′(Ω))′, χ ∈ Lp(Ω), g ∈W−1/p,p(Γ), h×n ∈ W−1−1/p,p(Γ),

and satisfying the compatibility conditions (4.2) and∫
Ω
χ dx = 〈g, 1〉Γ. (4.31)

Then, the Stokes problem (4.17) has exactly one solution

u ∈ L p(Ω) and π ∈W −1,p(Ω)/R.
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Moreover, there exists a constant C > 0 depending only on p and Ω such that:

‖u‖Lp(Ω) +‖π‖W−1,p(Ω)/R
� C

(
‖ f‖(T p′ (Ω))′ +‖χ‖Lp(Ω)+‖g‖W −1/p,p(Γ)

+‖h×n‖W−1−1/p,p(Γ)

)
. (4.32)

Proof. The proof is based on the usual duality argument, which relies on the
regularity of the adjoint problem with zero boundary conditions. We proceed in three
steps.

THE FIRST STEP: Thanks to Green formula (4.28), it is easy to verify that u ∈
Lp(Ω) is solution of problem (4.17) without the last condition, is equivalent to the vari-

ational formulation: find (u, π) ∈ Lp(Ω)×W −1,p(Ω) such that for any ϕϕϕϕ ∈ Yp′
T (Ω) ,

and for any q ∈W 1,p′(Ω) ,

−
∫
Ω

u ·Δϕϕϕϕ dx−〈π , divϕϕϕϕ 〉
W −1,p(Ω)×W 1,p′

0 (Ω)
= 〈 f , ϕϕϕϕ 〉Ω + 〈h×n, ϕϕϕϕ 〉Γ∫

Ω
u ·∇qdx = −

∫
Ω
χ qdx+ 〈g, q〉W −1/p,p(Γ)×W 1/p,p′(Γ), (4.33)

where the dualities on Ω and Γ are defined by:

〈·, · 〉Ω = 〈·, · 〉(T p′ (Ω))′×T p′ (Ω),

〈·, · 〉Γ = 〈·, · 〉W−1−1/p,p(Γ)×W 1+1/p,p′ (Γ).

Indeed, let (u, π) ∈ Lp(Ω)×W −1,p(Ω) be a solution to (4.33). It is clear that:

−Δu+∇π = f and divu = χ in Ω .

Consequently u ∈ H p(Δ; Ω) , because the characterization given by Lemma 4.12 im-
plies that ∇π ∈ (T p′(Ω))′ . Using Lemma 4.11 and Lemma 4.14, we obtain for any

ϕϕϕϕ ∈ Y p′
T (Ω) :

−
∫
Ω

u ·Δϕϕϕϕ dx+ 〈curlu×n, ϕϕϕϕ〉Γ−〈π , divϕϕϕϕ〉
W −1,p(Ω)×W 1,p′

0 (Ω)
=〈f , ϕϕϕϕ〉Ω.

Then, we deduce that
〈curlu×n, ϕϕϕϕ〉Γ = 〈h×n, ϕϕϕϕ〉Γ.

Let μμμμ ∈ W 1+1/p,p′(Γ) . As in the proof of Lemma 4.14, there exists a function ϕϕϕϕ ∈
W 2,p(Ω) satisfying (4.29). So, we can write that for any μμμμ ∈ W 1+1/p,p′(Γ) ,

〈curlu×n, μμμμ〉Γ = 〈h×n, μμμμ〉Γ,
which implies that curlu×n = h×n on Γ . From the equation divu = χ in Ω , we
deduce that for any q ∈W 1,p′(Ω) , we have

〈u ·n, q〉W −1/p,p(Γ)×W1/p,p′ (Γ) = 〈g, q〉W −1/p,p(Γ)×W1/p,p′ (Γ).
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Consequently, u · n = g in W −1/p,p(Γ) . The converse is a simple consequence of
Lemma 4.11, Lemma 4.13 and Lemma 4.14.

THE SECOND STEP: Let’s now solve problem (4.33). We suppose that

g = 0 on Γ and
∫
Ω
χ dx = 0.

We know due to Corollary 4.10 that for any pair

(F, ξ ) ∈ (
Lp′(Ω)⊥K p

T (Ω)
)× (

W 1,p′
0 (Ω)∩Lp′

0 (Ω)
)
,

there exists a unique ϕϕϕϕ ∈ W 2,p′(Ω) and q ∈W 1,p′(Ω)/R satisfying:⎧⎪⎨⎪⎩
−Δϕϕϕϕ+∇q = F and divϕϕϕϕ = ξ in Ω,

ϕϕϕϕ ·n = 0 and curlϕϕϕϕ×n = 0 onΓ,

〈ϕϕϕϕ ·n, 1〉Σ j = 0, for any 1 � j � J,

with the estimate

‖ϕϕϕϕ‖W2,p′ (Ω) +‖q‖W 1,p′ (Ω)/R
� C

{‖F‖Lp′ (Ω) +‖ξ‖W 1,p′ (Ω)

}
. (4.34)

Note that for any K ∈ R ,∣∣∣∫
Ω
χ qdx

∣∣∣ =
∣∣∣∫

Ω
χ (q+K)dx

∣∣∣ � ‖χ‖Lp(Ω)‖q‖Lp′ (Ω)/R

and

|〈f , ϕϕϕϕ〉Ω| � ‖f‖(Tp′ (Ω))′‖ϕϕϕϕ‖Tp′ (Ω) � ‖f‖(Tp′ (Ω))′ ‖ϕϕϕϕ‖W 2,p′ (Ω).

From these bounds, we have∣∣∣〈f , ϕϕϕϕ〉Ω + 〈h×n, ϕϕϕϕ〉Γ−
∫
Ω
χ (q+K)dx

∣∣∣
�

(
‖f‖(N p′ (Ω))′ +‖h×n‖W−1−1/p,p(Γ) +‖χ‖Lp(Ω)

)
×

(
‖F‖Lp′ (Ω) +‖ξ‖W 1,p′ (Ω)

)
.

In other words, we can say that the linear mapping:

(F, ξ ) �→ 〈f , ϕϕϕϕ〉Ω + 〈h×n, ϕϕϕϕ〉Γ−
∫
Ω
χ qdx

defines an element of the dual space of(
Lp′(Ω)⊥K p

T (Ω)
)× (

W 1,p′
0 (Ω)∩Lp′

0 (Ω)
)
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and according to the Riesz’s representation theorem, there exists a unique

(u, π) ∈ (
Lp(Ω)/K p

T (Ω)
)×W −1,p(Ω)/R

solution of problem (4.33) satisfying the bound (4.32).
A such solution (u, π) satisfies the problem (ST ) without the last condition but

we have only to set

ũ = u−
I

∑
i=1

〈u ·n, 1〉Σ j g̃radqT
j .

It is clear that (ũ, π) ∈ Lp(Ω)×W −1,p(Ω) is also solution of (ST ) and satisfies its
last condition.

THE THIRD STEP: Now, we suppose that g �= 0 and the compatibility condition
(4.31) holds. We consider the Neumann problem:

Δθ = χ in Ω and
∂ θ
∂ n

= g onΓ,

which has a unique solution θ ∈W 1,p(Ω)/R satisfying the estimate:

‖θ‖W 1,p(Ω)/R
� C

(‖χ‖Lp(Ω) +‖g‖W−1/p,p(Γ)

)
. (4.35)

Set w = ∇θ . By step i), there exists a unique (z, π) ∈ Lp(Ω)×W −1,p(Ω)/R solution
of problem: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δz+∇π = f +Δw in Ω,

divz = 0 in Ω,

z ·n = 0 and curlz×n = 0 onΓ,

〈z ·n, 1〉Σ j = 0, for any 1 � j � J,

where Δw = ∇χ and the characterization given by Lemma 4.12 implies that Δw ∈
(N p′(Ω))′ . Finally, the pair of functions (u, π) = (z +w, π) is the required solution.
�
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