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Abstract. In this work, we study the Brinkman-Forchheimer equations for unsteady

flows. We prove the continuous dependence of the solution on the Brinkman’s and

Forchheimer’s coefficients as well as the initial data and externel forces. Next, we

propose and study a perturbed compressible system that approximate the Brinkman-

Forchheimer equations. Finally, we propose a time dicretization of the perturbed

system by a semi-implicit Euler scheme and next a lowesst-order Raviart-Thomas

element is applied for spatial discretization. Some numerical results are given.
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1. Introduction

Transport phenomena in porous media are ubiquitous to the extent that it is hardly

difficult to find applications without some sort of porous material included. It also

spans wide range of scales from small scale applications in confine spaces like bio-organic

tissues to large scale applications in subsurface oil and gas reservoirs. With this large

number of scales involved, the governing equations that describe conservation laws are,

in a sense, simpler than those governing fluid flows. Some remarks, however, worth

mentioning. Probably the most important is the fact that the governing laws in porous

media have been adapted based on the assumption of the validity of the continuum

hypothesis.

This implies that field variables represent continuous functions of space and time and

hence enable the conservation laws to be written in the form of partial differential

equations [14, 15]. These conservation laws have been postulated based on upscaling the

conservation laws at the fluid continuum level using theory of volume averaging, method

of homogenization, theory of mixtures, etc. Unfortunaetly, the governing equations

based on these theories are usually difficult to solve and they are generally unclosed

because they contain terms at the pore scale which are hard to implement. Therefore,

to obtain field equations that are workable, researchers suggested terms to the governing

equations in addition to some properties of the porous material. In other words, some

ad hoc terms are introduced to extend the governing equations to encounter more

applications. Then, it remainsto experimentalists and theoreticians to validate these

terms. As an example, the simplest Darcy law, [4], suggests that the mass flux and

pressure gradient are proportional and the relationship between them is linear. This

linear relationship has later been found to be valid for values of Reynolds number less

than one. As Reynolds number becomes greater than one, this linear relationship is no

longer valid. To account for such nonlinearities, Forchheimer [5, 6] suggested a quadratic

term of the velocity to be included when considering momentum balance. Furthermore,

Brinkman [1, 2] considers another term to account for the possible no slip condition once

a confining wall exists. This produced the widely used Darcy-Brinkman-Forchheimer

equations. The main feature of this equation is that it is nonlinear which apparently

poses great difficulty to find analytical solution.

The Brinkman model is believed accurate when the flow velocity is too large for Darcy’s

law to be valid, and additionally the porosity is not too small. In this article, we

are concerned with structural stability for the following Brinkman-Forchheimer (BF in

short) equations.

∂tu − γ∆u + au + b|u |αu +∇ p = f in ΩT ,

divu = 0 in ΩT ,

u = 0 on ΣT ,

u(0) = u0 in Ω,

(1)

where ΩT = Ω×]0, T [, ΣT = Γ×]0, T [. u and p represent respectively fluid velocity and
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pressure. The constant γ > 0 is the Brinkman coefficient, a > 0 is the Darcy coefficient,

b is the Forchheimer coefficient and α ∈ [1, 2] is a given number. Ω is a bounded domain

of R3 with sufficiently smooth boundary Γ. ∆ is the Laplace operator, ‖ · ‖ and 〈u, v〉
denote respectively the norm and inner product on L2(Ω) .

2. The existence of solutions for the (BF) equations

The aim of this subsection is to give a variational formulation of problem (1) and to

prove the existence of weak solutions. We introduce the spaces

V = {v ∈ H 1
0(Ω), divv = 0} and H = {v ∈ L2(Ω), divv = 0}.

The variational formulation of (1) can be writen as: Given f ∈ L2(0, T, L2(Ω)) and

u0 ∈ V , find u ∈ L2(0, T, V ) ∩ L∞(0, T, H 1
0(Ω)), ∂tu ∈ L2(0, T, L2(Ω)) satisfying

(1) such that for almost all t and v ∈ V ,

d

dt
〈u(t), v〉+ γ〈∇u(t), ∇v〉+ a〈u(t), v〉+ b〈|u(t)|αu(t), v〉 = 〈f , v〉. (2)

Next, we discuss the solvability of the variational problem (2) by means of Faedo-

Galerkin’s method. This will be achieved in several steps that we describe below.

Step 1: Construction of approximating solutions.

Consider an orthonormal basis of V constituted of w 1, w 2, . . . , wm. Using this basis,

we introduce the space Vm = 〈w 1, . . . ,wm〉 and define the approximate solution um of

(2) as

um(t) =
m∑
i=1

gim(t)w i (3)

such that
d

dt
〈um(t), w i〉+ γ〈∇um(t), ∇w i〉+ a〈um(t), w i〉+ b〈|um(t)|αum(t), w i〉

= 〈f , w i〉, t ∈ [0, T ], i = 1, . . . ,m, (4)

um(0) = u0m → u0 ∈ Vm. (5)

Using the theory of ordinary differential equations, it follows that the problem (4) has

a solution um defined on [0, tm] with tm < T .

Step 2: a priori estimates.

First, we multiply (4) by gim(t) and sum up the obtained set of equations corresponding

to i = 1, . . . ,m. We obtain

1

2

d

dt
‖um(t)‖2 + γ‖∇um(t)‖2 + a‖um(t)‖2 + b‖um(t)‖α+2

α+2 = 〈f (t), um(t)〉,

≤ ‖f (t)‖ ‖um(t)‖,

≤ 1

2

(1

a
f (t)‖2 + a‖um(t)‖2

)
.
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Thus, we have

d

dt
‖um(t)‖2 + 2γ‖∇um(t)‖2 + a‖um(t)‖2 + 2b‖um(t)‖α+2

α+2 ≤
1

a
‖f (t)‖2.

Integrating this inequality from 0 to T with (T ≤ tm) leads to

sup
0≤t≤T

‖um(t)‖2 + 2γ

∫ T

0

‖∇um(t)‖2 dt+ a

∫ T

0

‖um(t)‖2 dt+ 2b

∫ T

0

‖um(t)‖α+2
α+2 dt

≤ 1

a

∫ T

0

‖f (t)‖2 dt+ ‖u0‖2 <∞. (6)

Now, we multiply (4) by g
′
im(t) and add the obtained equations for i = 1, . . . ,m. We

obtain

‖∂tum(t)‖2 +
1

2
γ
d

dt
‖∇um(t)‖2 +

1

2
a
d

dt
‖um(t)‖2 +

b

α + 2

d

dt
‖um(t)‖α+2

α+2

= 〈f (t), ∂tum(t)〉,

≤ 1

2
‖f (t)‖2 +

1

2
‖∂tum(t)‖2. (7)

Next, we integrate (7) from 0 to T and get∫ T

0

‖∂tum(t)‖2 dt+ γ‖∇um(T )‖2 + a‖um(T )‖2 +
2b

α + 2
‖um(t)‖α+2

α+2

≤ 1

2

∫ T

0

‖f (t)‖2 dt+ γ‖∇um0‖2 + a‖um0‖2 +
2b

α + 2
‖um0‖α+2

α+2.

In particular, we obtain∫ T

0

‖∂tum(t)‖2 dt ≤ 1

2

∫ T

0

‖f (t)‖2 dt+ c <∞, (8)

where

c = γ‖∇u0‖2 + a‖u0‖2 +
2b

α + 2
‖u0‖α+2

α+2.

Eventually, integrating (7) from 0 to t, we get∫ t

0

‖∂tum(s)‖2 ds+ γ‖∇um(t)‖2 + a‖um(t)‖2 +
2b

α + 2
‖um(t)‖α+2

α+2

≤ 1

2

∫ T

0

‖f (s)‖2 ds+ c. (9)

In particular, we infer

sup
0≤t≤T

‖∇um(t)‖2 ≤ 1

2γ

∫ T

0

‖f (s)‖2 ds+ c <∞. (10)

Before going further, let us mention that the above a priori estimates show that in fact

tm = T .

Step 3: Passage to the limit.
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We need to pass to the limit when m approaches infinity. It follows from (6), (8) and (10)

that there is a subsequence of (um)m that we still denote (um)m by abuse of notation

and some u such that

um −→ u weak star in L∞(0, T, H 1
0(Ω)), (11)

um −→ u weak in L2(0, T, V ), (12)

|um|αum −→ w weak in L
α+2
α+1 (0, T, L

α+2
α+1 (Ω)), (13)

∂tum −→ ∂tu weak in L2(0, T, L2(Ω)). (14)

From (12) and (14), we deduce that u is bounded in H 1(Q). Since the imbedding of

H 1(Q) in L2(Q) is compact, we can extract a subsequence denoted again um such that

um −→ u strongly in L2(0, T, L2(Ω)) and a. e. in Q. (15)

Therefore, it remains to prove that w = |u |αu . For this purpose, we apply the same

argument used in [8, Lemma 1.3]. Indeed, using (15), it follows that

|um|αum −→ |u |αu weak in L
α+2
α+1 (0, T, L

α+2
α+1 (Ω)).

Thanks to (13), one obtains w = |u |αu . Now, It is easy to pass to the limit in (4-5)

and conclude that u is solution of (2).

Therefore, we have

Theorem 2.1. For any u0 ∈ V and f ∈ L2(0, T, L2(Ω)), problem (1) admits at least

one solution u satisfying

u ∈ L∞(0, T, V ) ∩ L2(0, T, H2(Ω)), ∂tu ∈ L2(0, T, L2(Ω)) and p ∈ L2(0, T, L2(Ω)).

Moreover, for any T > 0, we have

sup
0≤t≤T

‖∇u(t)‖ ≤ C and

∫ T

0

‖∂tu(t)‖2 dt ≤ C, (16)

where C idenotes a positive constant depending on u0 and the parameters of problem

(1).

3. Continuous dependence on data

In this section, we show that the solution depends continuously on the initial velocity

and the external forces. For that purpose, let (u1, p1) and (u2, p2) such that

∂tu1 − γ∆u1 + au1 + b|u1|αu1 +∇ p1 = f 1 in ΩT ,

divu1 = 0 in ΩT ,

u1 = 0 on ΣT ,

u1(0) = u1
0 in Ω,

(17)
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and

∂tu2 − γ∆u2 + au2 + b|u2|αu2 +∇ p2 = f 2 in ΩT ,

divu2 = 0 in ΩT ,

u2 = 0 on ΣT ,

u2(0) = u2
0 in Ω.

(18)

Now, we are able to state the main result of this section

Theorem 3.1. Let u1 and u2 as in (17) and (18). Then, there exists a positive constant

K depending on the parameters γ, a and Ω such that

‖u1(t)− u2(t)‖2 ≤ e−Kt‖u1(0)− u2(0)‖2 +

∫ t

0

eK(s−t)‖f1(s)− f2(s)‖2 ds. (19)

Proof. We know that both u1 and u2 satisfy the variational formulation (2) with respect

to u1
0, f 1 and u2

0, f 2 respectively. Rewriting (2) for u1 with a test function v − u1, we

obtain

d

dt
〈u1(t), v − u1(t)〉+ γ〈∇u1(t), ∇(v − u1(t))〉+ a〈u1(t), v − u1(t)〉

+ b〈|u1(t)|αu1(t), v − u1(t)〉 = 〈f 1, v − u1(t)〉. (20)

Equivalently for u2, we take v − u2 as a test function and obtain

d

dt
〈u2(t), v − u2(t)〉+ γ〈∇u2(t), ∇(v − u2(t))〉+ a〈u2(t), v − u2(t)〉

+ b〈|u2(t)|αu2(t), v − u2(t)〉 = 〈f 2, v − u2(t)〉. (21)

Now, let w(t) = u2(t)−u1(t) and w(0) = u2(0)−u1(0). Choosing v = u2 in (20) and

v = u1 in (21), summing up both equations, we get

1

2

d

dt
‖w(t)‖2 + γ‖∇w(t)‖2 + a‖w(t)‖2 + b〈|u2|αu2 − |u1|αu1, w(t)〉

= 〈f 2(t)− f 1(t), w(t)〉

Since the operator T (ξ) = |ξ|αξ is monotone, we have obviously 〈|u1|αu1 −
|u2|αu2, u(t)〉 ≥ 0. Therefore,

d

dt
‖w(t)‖2 + 2γ‖∇w(t)‖2 + a‖w(t)‖2 ≤ 1

a
‖f 2(t)− f 1(t)‖2

Thanks to (27), we obtain

d

dt
‖w(t)‖2 + c‖w(t)‖2 ≤ 1

a
‖f 2(t)− f 1(t)‖2,

where the constant c depends on D(the constant in (27)), γ and a. Eventually, using

Gronwall’s lemma, we obtain the estimate (19).

Remark 3.2. Obviously, this last result implies in particular the uniqueness of solutions

of problem (1).
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4. Continuous dependence on the Brinkman’s and Forchheimer’s

coefficients

In this section, we show that the solutions of the BF problem (1) depend continuously

on the Brinkman’s and Forchheimer’s coefficients, thereby we extend the result of [3].

Let (u1, p1) and (u2, p2) such that

∂tu1 − γ1∆u1 + au1 + b1|u1|αu1 +∇ p1 = 0 in ΩT ,

divu1 = 0 in ΩT ,

u1 = 0 on ΣT ,

u1(0) = u0 in Ω,

(22)

and

∂tu2 − γ2∆u2 + au2 + b2|u2|αu2 +∇ p2 = 0 in ΩT ,

divu2 = 0 in ΩT ,

u2 = 0 on ΣT ,

u2(0) = u0 in Ω.

(23)

We set u = u1 − u2 and p = p1 − p2. Then, (u , p) satisfies

∂tu − γ1∆u − γ∆u2 + au +∇ p = −b|u1|αu1 − b2(|u1|αu1 − |u2|αu2) in ΩT ,

divu = 0 in ΩT ,

u = 0 on ΣT ,

u(0) = 0 in Ω,

(24)

where γ = γ1 − γ2 and b = b1 − b2. Now, we claim the following

Theorem 4.1. Let u be the solution of (24). Then, there exist positive constants M

and Q, depending on the parametes of (24) such that

‖∇u (t)‖2 + ‖u(t)‖2 ≤Mγ2 +Qb2. (25)

Proof. Mulitplying (24) by u and integrating over Ω leads to

1

2

d

dt
‖u(t)‖2 + γ1‖∇u(t)‖2 + a‖u(t)‖2 = − b2〈|u1|αu1 − |u2|αu2, u(t)〉

− b〈|u1(t)|αu1(t), u(t)〉 − γ〈∇u2(t), ∇u(t)〉.

With the monoticity of the operator T (ξ) = |ξ|αξ, we get

1

2

d

dt
‖u(t)‖2 + γ1‖∇u(t)‖2 + a‖u(t)‖2

≤
∣∣∣b〈|u1(t)|αu1(t), u(t)〉

∣∣∣+
∣∣∣γ〈∇u2(t), ∇u(t)〉

∣∣∣. (26)

Next, we define the Sobolev constant D as

∀v ∈ H 1
0(Ω), ‖v‖p ≤ D‖∇ v‖ for any 1 ≤ p ≤ 6. (27)
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Thus, thanks to Hölder’s inequality and the Sobolev inequality (27), we get∣∣∣b〈|u1(t)|αu1(t), u(t)〉
∣∣∣ ≤ |b|Dα+2‖∇u1(t)‖α+1‖∇u(t)‖

≤ b2D2α+4

γ1

‖∇u1(t)‖2(α+1) +
γ1

4
‖∇u(t)‖2. (28)

Using (28) and the fact that∣∣∣γ〈∇u2(t), ∇u(t)〉
∣∣∣ ≤ |γ|2

γ1

‖∇u2‖2 +
γ1

4
‖∇u‖2, (29)

we obtain thanks to (26)

d

dt
‖u(t)‖2 + γ1‖∇u(t)‖2 + 2a‖u(t)‖2 ≤ 2b2D

2α+4

γ1

‖∇u1(t)‖2α+1 +
2γ2

γ1

‖∇u2(t)‖2

≤ Q0b
2 +

2γ2

γ1

‖∇u2(t)‖2, (30)

where Q0 = 2D2α+4C2α+1γ−1
1 and C is the constant in (16). Now, multiplying (24) by

∂tu and integrating over Ω leads to

‖∂tu(t)‖2 +
1

2

d

dt

(
γ1‖∇u(t)‖2 + a‖u(t)‖2

)
≤
∣∣∣b2〈|u1(t)|αu1(t)− |u2(t)|αu2(t), ∂tu(t)〉

∣∣∣
+
∣∣∣γ〈∆u2(t), ∂tu(t)〉

∣∣∣+
∣∣∣b〈|u1(t)|αu1(t), ∂tu(t)〉

∣∣∣. (31)

Using the mean value theorem and Hölder’s inequality and (27) and (16), it is easy to

show that∣∣∣b2〈|u1(t)|αu1(t)− |u2(t)|αu2(t), ∂tu(t)〉
∣∣∣ ≤ b2D

α+1Cα‖∇u(t)‖ ‖∂tu(t)‖

≤ b2
2D

2α+2C2α‖∇u(t)‖2 +
1

3
‖∂tu(t)‖2. (32)

Using the first equation in (23) and the Cauchy-Schwarz inequality, we obtain∣∣∣γ〈∆u2(t), ∂tu(t)〉
∣∣∣ ≤ γ

γ2

∣∣∣〈∂tu2(t) + au2(t) + b2|u2(t)|αu2(t), ∂tu(t)〉
∣∣∣,

≤ 1

3
‖∂tu‖2 +

3γ2

4γ2
2

∥∥∥∂tu2 + au2 + b2|u2|αu2

∥∥∥2

,

≤ 1

3
‖∂tu‖2 +

3γ2

4γ2
2

(
‖∂tu2‖2 + a2‖u2‖2 + b2

2‖u2‖2α+2
2α+2

)
,

≤ 1

3
‖∂tu‖2 +

3γ2

4γ2
2

(
‖ ∂tu2‖2 + a2D2C2 + b2

2(DC)2α+2
)
. (33)

Similarly, we have∣∣∣b〈|u1(t)|αu1(t), ∂tu(t)〉
∣∣∣ ≤ |b|Dα+1‖∇u1‖α+1 ‖∂tu‖,

≤ b2 3

4
D2(α+1)‖∇u1‖2(α+1) +

1

3
‖∂tu‖2,

≤ b2 3

4
D2(α+1)C2(α+1) +

1

3
‖∂tu‖2. (34)
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Thus, combining (32-34), we obtain from (31)

d

dt

(
γ1‖∇u(t)‖2 + a‖u(t)‖2

)
≤M0‖∇u(t)‖2 +Q1b

2 +
3

2γ2
2

γ2‖∂tu2(t)‖2 +M1γ
2, (35)

where

M0 = 27b2
2D

2α+2C2α, Q1 = 3
2
D2α+2C2α+1, M1 = 3

2
γ−2

2 (a(DC)2 + b2
2(DC)2α+2).

Multiplying (30) by β = 2M0

γ1
, we obtain

d

dt

(
β‖u(t)‖2

)
+ 2M0‖∇u(t)‖2 + 2aβ‖u(t)‖2 ≤ βQ0b

2 + 2β
γ2

γ1

‖∇u2(t)‖2. (36)

Next, we add the bounds (35) and (36) to get

d

dt

(
γ1‖∇u(t)‖2 + (a+ β)‖u(t)‖2

)
+M0‖∇u(t)‖2 + 2aβ‖u(t)‖2

≤ γ2
(2β

γ1

‖∇u2(t)‖2 +
9

2γ2
2

‖∂tu2(t)‖2 +M1

)
+ b2(Q1 + βQ0).

Now, we set F (t) = γ1‖∇u(t)‖2 + (a+ β)‖u(t)‖2. It is easy to show that

F ′(t) +Q2F (t) ≤ γ2
(2β

γ1

‖∇u2(t)‖2 +
9

2γ2
2

‖∂tu2(t)‖2 +M1

)
+ b2(Q1 + βQ0),

where Q2 = min (M0

γ1
, 2aβ
a+β

). Therefore, integrating from 0 to t, applying Gronwall’s

inequality and using (16), we obtain

F (t) ≤ γ2
(

2βγ−1
1 C +

9

2
γ−2

2 C +
M1

Q2

)
+ b2(Q1 + βQ0).

Furtheremore, we can derive (25) with

Q =
Q1 + βQ0

min(γ1, (a+ β))
and M =

2βγ−1
1 C + 9

2γ22
C + M1

Q1

min(γ1, (a+ β))
.

This achieves the proof of the continuous dependence on the Brinkman’s and

Forchheimer coefficients.

5. Approximation by the artificial compressibility method

The importance of the treatment of the incompressibility constraint has been recognized

since a long time. Towards incompressible flows, density variation is not linked to the

pressure. A possible method is to introduce an artificial compressibility, i.e. adding the

time-derivation of pressure to the continuity equation, first proposed by Chorin (1967),

named pseudo-compressibility. This method introduced waves of finite speed into the

incompressible flow, in which the artificial pressure waves would otherwise be infinite. In

this section we study a perturbed system that approximates, in the limit, the Brinkman-

Forchheimer equations via the artificial compressibility method. We prove the existence

of weak solution and show how the solution of the perturbed problem converges to the

solution of the Brinkman-Forchheimer problem when ε → 0 where ε > 0 is arbitrary.

The pseudo-compressibility method that we propose to study is to approximate the



The Brinkman-Forchheimer equations 10

solution (u , p) of the incompressible Brinkman-Forchheimer equations by (uε, pε)

satisfying the following perturbed system:

∂tu ε − γ∆u ε + au ε + b|u ε|αu ε +∇ pε = f in ΩT ,

divu ε + ε∂tpε = 0 in ΩT ,

u ε = 0 on ΣT ,

u ε(0) = u0 in Ω,

pε(0) = p0 in Ω,

(37)

where p0 ∈ L2(Ω) is arbitrary and independent of ε.

5.1. Existence of solutions of the perturbed problem

We can easily verify that for a given f ∈ L2(0, T, L2(Ω)) and an u0 ∈ L2(Ω), the

problem (37) is equivalent to the variational formulation: Find u ε ∈ L2(0, T,H 1
0(Ω))∩

L∞(0, T,L2(Ω)) and pε ∈ L2(0, T, L2(Ω)) such that

d

dt
〈uε(t), v〉+ γ〈∇uε(t), ∇v〉+ a〈uε(t), v〉+ b〈|uε(t)|αuε(t), v〉

−〈pε(t), div v〉 = 〈f (t), v〉, ∀v ∈ H 1
0 (Ω) ∩ Lα+2(Ω), (38)

〈divuε(t), q〉 = −ε〈∂tpε(t), q〉, ∀q ∈ L2(Ω). (39)

Now, we state the existence result as follows

Theorem 5.1. For ε > 0 fixed, given f ∈ L2(0, T, L2(Ω)), u0 ∈ H and p0 ∈ L2(Ω),

there exists at least one solution (uε, pε) of the perturbed problems (37). Moreover,

(uε, pε) ∈ L2(0, T, H 1
0 (Ω)) ∩ L∞(0, T, L 2(Ω))× L2(0, T, L2(Ω)).

Proof. To prove the wellposedness of the problem (38-39), we will use the Faedo-Galerkin

method. We find the approximate solution of uε(t) and pε(t) respectively in the forms

uε
m(t) =

m∑
i=1

gim(t)w i and pεm(t) =
m∑
j=1

ξjm(t)rj, (40)

where the coefficients w i and rj satisfy the system of ODE’s:

d

dt
〈uε

m(t), w k〉+ γ〈∇uε
m(t), ∇w k〉+ a〈uε

m(t), w k〉+ b〈|uε
m(t)|αuε

m(t), w k〉

−〈pεm(t), divw k〉 = 〈f (t), w k〉, k = 1, . . . ,m (41)

〈divuε
m(t), rl〉 = −ε〈∂tpεm(t), rl〉, l = 1, . . . ,m. (42)

Moreover, we have the following initial conditions

uε
m(0) = u0m and pεm(0) = p0m, (43)

where u0m and p0m are the orthogonal projections of u0 and p0 onto the subspaces

spanned by w 1, . . . , wm and r1, . . . , rm in L2(Ω) and L2(Ω) respectively.

It is clear that for each m, there exist solutions uε
m(t) and pεm(t) in the form (40) which

satisfy (41-43) almost everywhere on 0 ≤ t ≤ Tm for some Tm, 0 < Tm ≤ T . The

following estimtes allow us to take Tm = T for all m.
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a) First estimtes: We multiply the kth equation of (41) by gkm(t) and sum up over

k. Next we multiply the lth equation of (42) by ξlm(t) and sum up over l. We get

1

2

d

dt
‖uε

m(t)‖2 + γ‖∇uε
m(t)‖2 + a‖uε

m(t)‖2 + b‖uε
m(t)‖α+2

α+2 +
ε

2

d

dt
‖pεm(t)‖2

= 〈f (t), uε
m(t)〉,

≤ a

2
‖uε

m(t)‖2 +
1

2a
‖f (t)‖2,

so that

d

dt

(
‖uε

m(t)‖2 + ε‖pεm(t)‖2
)

+ 2γ‖∇uε
m(t)‖2 + a‖uε

m(t)‖2 + 2b‖uε
m(t)‖α+2

α+2

≤ 1

2a
‖f (t)‖2. (44)

Integrating both sides of (44) over the interval (0, t) we get

‖uε
m(t)‖2 + ε‖pεm(t)‖2 + 2γ

∫ t

0

‖∇uε
m(s)‖2 ds+ a

∫ t

0

‖uε
m(s)‖2ds

+2b

∫ t

0

‖uε
m(s)‖α+2

α+2 ds ≤
1

2a

∫ t

0

‖f (s)‖2 ds+ ‖uε
m(0)‖2 + ε‖pεm(0)‖2.

From this inequality we infer

sup
t∈[0, T ]

(
‖uε

m(t)‖2 + ε‖pεm(t)‖2
)
≤ d1, (45)

∫ T

0

‖∇uε
m(t)‖2 dt ≤ d1

2γ
, (46)∫ T

0

‖uε
m(t)‖2 dt ≤ d1

a
, (47)∫ T

0

‖uε
m(t)‖α+2

α+2 dt ≤
d1

2b
, (48)

where

d1 = ‖u0‖2 + ε‖p0‖2 +
1

2a

∫ T

0

‖f (s)‖2 ds.

b) Second estimtes: In addition to the previous estimates, we want to prove an estimate

of the fractional derivative with respect to time of uε
m(t) in order to pass to the limit in

the nonlinear term. We let

φm(t) = f (t)− γ∆uε
m(t)− auε

m(t)− b|uε
m(t)|αuε

m(t).

Therefore,

‖φm(t)‖H −1
(Ω)
≤ ‖f (t)‖+ a‖uε

m(t)‖+ γ‖∇uε
m(t)‖+ b‖uε

m(t)‖α+1
α+2. (49)



The Brinkman-Forchheimer equations 12

Hence, (41-42) reads now

d

dt
〈uε

m(t), w k〉 − 〈pεm(t), divw k〉 = 〈φm(t), w k〉, k = 1, . . . ,m, (50)

〈divuε
m(t), rl〉 = −ε〈∂tpεm(t), rl〉, l = 1, . . . ,m. (51)

We extend the functions uε
m(t), pεm(t), f (t) gkm(t), ξlm(t) and φεm(t) by 0 outside the

interval [0, T ]. Then we obtain in the sense of distributions on R:

d

dt
〈ũε

m(t), w k〉 − 〈p̃εm(t), divw k〉

= 〈φ̃m(t), w k〉+ 〈u0m, w k〉δ(0)− 〈uε
m(T ), w k〉δ(T ), k = 1, . . . ,m,

〈div ũε
m(t), rl〉+ ε〈∂tp̃εm(t), rl〉

= 〈p0m, rl〉δ(0)− 〈pεm(T ), rl〉δ(T ), l = 1, . . . ,m,

where δ(0) and δ(T ) are respectively the Dirac distributions at 0 and T . Next, by taking

the Fourier transforms, we get

2iπτ〈ûε
m(τ), w k〉 − 〈p̂εm(τ), divw k〉

= 〈φ̂m(τ), w k〉+ 〈u0m, w k〉 − 〈uε
m(T ), w k〉 exp(−2iπτT ), k = 1, . . . ,m,

〈div ûε
m(τ), rl〉+ 2iπτε〈p̂εm(τ), rl〉

= ε〈p0m, rl〉 − ε〈pεm(T ), rl〉 exp(−2iπτT ), l = 1, . . . ,m.

Let ĝkm(τ) and ξ̂lm(τ) be respectively the Fourier transform of gkm(t) and ξlm(t). Now,

we multiply both last equations by ĝkm(τ) (the former) and the ξ̂lm(τ) (the latter) and

add the results for k = 1, . . . ,m and l = 1, . . . ,m. The result of this calculation reads

2iπτ
(
‖ûε

m(τ)‖2 + ε‖p̂εm(τ)‖2
)

= 〈φ̂m(τ), ûε
m(τ)〉+ 〈u0m, û

ε
m(τ)〉+ ε〈p0m, p̂

ε
m(τ)〉

−
(
〈uε

m(T ), ûε
m(τ)〉+ ε〈pεm(T ), p̂εm(τ)〉

)
exp(−2iπτT ).

Using estimate (45) we get

2π|τ |
(
‖ûε

m(τ)‖2 + ε‖p̂εm(τ)‖2
)
≤ ‖φ̂m(τ)‖H −1

(Ω)
‖ûε

m(τ)‖+ 2
√
d1‖ûε

m(τ)‖

+ 2
√
d1ε‖p̂εm(τ)‖. (52)

But

‖φ̂m(τ)‖H −1
(Ω)
≤
∫ T

0

‖φm(t)‖H −1
(Ω)

dt. (53)

Using estimates (46-49) and applying the compactness result of [16, Theorem 2.2 page

274], we can show that∫ +∞

−∞
|τ |2θ‖ûε

m(τ)‖2 dτ ≤ Const, for some θ > 0. (54)

c) Passage to the limit: We need to pass to the limit when m→∞ and ε→ 0. At

this step, by fixing ε, we are only concerned with the passage to the limit as m → ∞.
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Based on (45-48), it is clear that there exist subsequences still denoted uε
m and pεm

satisfying

uε
m −→ uε in L2(0, T ; H 1

0(Ω)) weakly, (55)

uε
m −→ uε in L∞(0, T ; L2(Ω)) weak− star, (56)

pεm −→ pε in L∞(0, T ; L2(Ω)) weak− star. (57)

uε
m −→ uε in Lα+2(0, T ; Lα+2(Ω)) weakly, (58)

Moreover, due to (55), (54) and [16, Theorem 2.3 page 276], we have

uε
m −→ uε in L2(0, T ; L2(Ω)) strongly. (59)

In order to prove that (uε, pε) satisfies (38-39), we shall use the same arguments of

[16]. Multiplying both sides of (41-42) by ψ(t) ∈ C∞(0, T ) such that ψ(T ) = 0 and

integrating over (0, T ), we get

−
∫ T

0

〈uε
m(t), w k〉ψ′(t)dt+ γ

∫ T

0

〈∇uε
m(t), ψ(t)∇w k〉dt+ a

∫ T

0

〈uε
m(t), w kψ(t)〉dt

+b

∫ T

0

〈|uε
m(t)|αuε

m(t), w kψ(t)〉dt−
∫ T

0

〈∇ pεm(t), w kψ(t)〉dt

= 〈u0m, w k〉ψ(0) +

∫ T

0

〈f (t), w kψ(t)〉dt, (60)∫ T

0

〈divuε
m(t), rlψ(t)〉dt = ε〈p0m, rl〉ψ(0) +

∫ T

0

ε〈pεm(t), rl〉ψ′(t)dt. (61)

Using the previous convergence properties, it is easy to pass to the limit m→∞ in the

linear terms. For the nonlinear term, we apply the following Lemma that we postpone

the proof to the end of this paragraph.

Lemma 5.2. We have the following property as m→∞∫ T

0

〈|uεm(t)|αuεm(t), wkψ(t)〉dt −→
∫ T

0

〈|uε(t)|αuε(t), wkψ(t)〉dt. (62)

Using lemma 5.2, we can pass to the limit in (60-61) and obtain for k = 1, . . . ,m and

l = 1, . . . ,m

−
∫ T

0

〈uε(t), w k〉ψ′(t)dt+ γ

∫ T

0

〈∇uε(t), ψ(t)∇w k〉dt+ a

∫ T

0

〈uε(t), w kψ(t)〉dt

+b

∫ T

0

〈|uε(t)|αuε(t), w kψ(t)〉dt−
∫ T

0

〈∇ pε(t), w kψ(t)〉dt

= 〈u0, w k〉ψ(0) +

∫ T

0

〈f (t), w kψ(t)〉dt, (63)∫ T

0

〈divuε(t), rlψ(t)〉dt = ε〈p0, rl〉ψ(0) +

∫ T

0

ε〈pε(t), rl〉ψ′(t)dt. (64)
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Now, observe that the nonlinear term is continuous with respect to w k. Indeed, for any

w k ∈ H 1
0(Ω), we have∣∣∣∣∫ T

0

〈|uε(t)|αuε(t), w kψ(t)〉dt
∣∣∣∣ ≤ sup

t∈[0, T ]

|ψ(t)|
∫ T

0

∫
Ω

|uε(t)|α+1 |w k| dx dt,

≤ C‖w k‖L6
(Ω)

∫ T

0

(∫
Ω

|uε(t)|
6(α+1)

5 dx
)
dt.

Thanks to the embeddings Lα+2(Ω) ↪→ L
6(α+1)

5 (Ω) with α ∈ [1, 2] and H 1
0 (Ω) ↪→ L6(Ω),

we get∣∣∣∣∫ T

0

〈|uε(t)|αuε(t), w kψ(t)〉dt
∣∣∣∣ ≤ C‖uε‖α+1

Lα+2(0, T ;Lα+2
(Ω))
‖w k‖L6

(Ω)
,

≤ C‖w k‖H 1

0 (Ω)
. (65)

By linearity, the equation (63) still hlods for any w that is a linear combination of

functions w k and by continuity argument this equation is still true for any w ∈ H 1
0 (Ω).

Similarly, the equation (64) still holds true for any r ∈ L2(Ω). Then, we can write

−
∫ T

0

〈uε(t), w〉ψ′(t)dt+ γ

∫ T

0

〈∇uε(t), ψ(t)∇w〉dt+ a

∫ T

0

〈uε(t), wψ(t)〉dt

+b

∫ T

0

〈|uε(t)|αuε(t), wψ(t)〉dt−
∫ T

0

〈∇ pε(t), wψ(t)〉dt

= 〈u0, w〉ψ(0) +

∫ T

0

〈f (t), wψ(t)〉dt, (66)∫ T

0

〈divuε(t), rψ(t)〉dt = ε〈p0, r〉ψ(0) +

∫ T

0

ε〈pε(t), r〉ψ′(t)dt. (67)

In particular, choosing in (66-67) ψ = ϕ ∈ D(0, T ), we see that (uε, pε) satisfies (38-39)

in the sense of distributions.

It remains to prove that uε and pε satisfy the initial conditions in (37). For this purpose,

we take again, ψ ∈ C∞(0, T ) with ψ(T ) = 0, multiply (38-39) by ψ and integrate over

(0, T ). This yields

−
∫ T

0

〈uε(t), w〉ψ′(t)dt+ γ

∫ T

0

〈∇uε(t), ψ(t)∇w〉dt+ a

∫ T

0

〈uε(t), wψ(t)〉dt

+b

∫ T

0

〈|uε(t)|αuε(t), wψ(t)〉dt−
∫ T

0

〈∇ pε(t), wψ(t)〉dt

= 〈uε(0), w〉ψ(0) +

∫ T

0

〈f (t), wψ(t)〉dt, (68)∫ T

0

〈divuε(t), rψ(t)〉dt = ε〈pε(0), r〉ψ(0) +

∫ T

0

ε〈pε(t), r〉ψ′(t)dt. (69)

If we compare (66) with (68) and (67) with (69), we observe that

∀w ∈ H 1
0 (Ω), 〈uε(0)− u0, w〉ψ(0) = 0,
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∀r ∈ L2(Ω), 〈pε(0)− p0, r〉ψ(0) = 0.

Choosing ψ(0) = 1 shows that the conditions uε(0) = u0 and pε(0) = p0 are verified.

The proof of the previous Theorem used the property presented in Lemma 5.2 and we

prove it here.

Proof of Lemma 5.2. We write the following∣∣∣∣∫ T

0

〈|uε
m(t)|αuε

m(t), w kψ(t)〉dt −
∫ T

0

〈|uε(t)|αuε(t), w kψ(t)〉dt
∣∣∣∣

≤
∫ T

0

∣∣∣|uε
m(t)|αuε

m(t)− |uε(t)|αuε(t)
∣∣∣ |w k| |ψ(t)|,

≤ (α + 1) sup
x∈Ω
|w k(x)| sup

t∈[0, T ]

|ψ(t)|
∫ T

0

∫
Ω

∣∣∣uε
m(t)− uε(t)

∣∣∣(|uε
m(t)|α + |uε(t)|α

)
dx dt,

≤ (α + 1) sup
x∈Ω
|w k(x)| sup

t∈[0, T ]

|ψ(t)|
∫ T

0

‖uε
m(t)− uε(t)‖

(
‖uε

m(t)‖α2α + ‖uε(t)‖α2α
)
dt,

≤ C‖uε
m(t)− uε(t)‖

L2(0, T,L2
(Ω))

(
‖uε

m(t)‖α
Lα+2(0, T,Lα+2

(Ω))
+ ‖uε(t)‖α

Lα+2(0, T,Lα+2
(Ω))

)
,

≤ C‖uε
m(t)− uε(t)‖

L2(0, T,L2
(Ω))

.

The last term converges obviously to 0 as m→∞, this finishes the proof.

5.2. The solutions of perturbed problem converge to solution of BF problem

The aim of this subsection is to consider the limit as ε → 0. It is useful to establish

some a priori estimates for u ε and pε, independent of ε. Since we are interested in

ε→ 0, we can always suppose that ε ≤ 1. It follows from (45, 46, 55-57) and the lower

semi-continuity of the norm that for any ε ∈ (0, 1], it holds

‖u ε‖
L∞(0, T ;L2

(Ω))
≤ lim inf

m→∞
‖u ε

m‖L∞(0, T ;L2
(Ω))
≤
√
d1, (70)

‖u ε‖
L2(0, T ;H 1

0 (Ω))
≤ lim inf

m→∞
‖u ε

m‖L2(0, T ;H 1

0 (Ω))
≤

√
d1

2γ
, (71)

√
ε‖pε‖L∞(0, T ;L2(Ω)) ≤

√
ε lim inf

m→∞
‖pεm‖L∞(0, T ;L2(Ω)) ≤

√
d1. (72)

Eventually, from (54) it holds for 0 < θ < 1/4 and for any ε ∈ (0, 1]∫ +∞

−∞
|τ |2θ‖ûε(τ)‖2 dτ ≤ lim inf

m→∞

∫ +∞

−∞
|τ |2θ‖ûε

m(τ)‖2 dτ ≤ Const, (73)

where the constant is independent of ε.

Theorem 5.3. Let (uε, pε) be the solution of problem (37). Then, there exists a

subsequence still denoted by (uε, pε) so that

uε −→ u in L2(0, T ; H1
0(Ω)) weakly, (74)

uε −→ u in L∞(0, T ; L2(Ω)) weak− star, (75)
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uε −→ u in L2(0, T ; L2(Ω)) strongly, (76)

pε −→ p in L∞(0, T ; L2(Ω)) weak− star, (77)

where (u, p) is the solution of the (BF) equations (1).

Proof. By virtue of (70-73), there exists a subsequence still denoted by (u ε, pε) such

that

uε −→ u∗ in L2(0, T ; H 1
0(Ω)) weakly, (78)

uε −→ u∗ in L∞(0, T ; L2(Ω)) weak− star, (79)

uε −→ u∗ in L2(0, T ; L2(Ω)) strongly, (80)
√
ε pε −→ χ in L∞(0, T ; L2(Ω)) weak− star, (81)

Passing to the limit ε → 0 for the subsequence in (39), we obtain in the sense of

distributions
√
ε〈∂tpε(t), q〉 −→ 〈∂tχ, q〉,

and then ε〈∂tpε(t), q〉 −→ 0. This limit with (39) gives

〈divu∗(t), q〉 = 0, ∀q ∈ L2(Ω),

which in turn implies that u∗ is divergence free, i. e. divu∗ = 0. Therefore

u∗ ∈ L2(0, T ;V ) ∩ L∞(0, T ; H ).

In order to show that u∗ verifies the variational formulation (2), we take v ∈ V in (38)

and we multiply both sides of this last equation by ψ ∈ D(0, T ) and we integrate over

(0, T ), we get

−
∫ T

0

〈uε(t), v〉ψ′(t)dt+ γ

∫ T

0

〈∇uε(t), ψ(t)∇v〉dt+ a

∫ T

0

〈uε(t), vψ(t)〉dt

+b

∫ T

0

〈|uε(t)|αuε(t), vψ(t)〉dt =

∫ T

0

〈f (t), vψ(t)〉dt. (82)

Using the convergence properties (78-79), we can easily pass to the limit ε → 0 in the

linear terms in (82). Next, we use the same arguments of the proof of (62) to check that∫ T

0

〈|uε(t)|αuε(t), vψ(t)〉dt −→
∫ T

0

〈|u∗(t)|αu∗(t), vψ(t)〉dt. (83)

We obtain in the limit

−
∫ T

0

〈u∗(t), v〉ψ′(t)dt+ γ

∫ T

0

〈∇u∗(t), ψ(t)∇v〉dt+ a

∫ T

0

〈u∗(t), vψ(t)〉dt

+b

∫ T

0

〈|u∗(t)|αu∗(t), vψ(t)〉dt =

∫ T

0

〈f (t), vψ(t)〉dt, ∀v ∈ V . (84)

The solution of problem (84) satisfies then (2) in the sense of distributions. It follows

that in order to show that u∗ = u and pε = p, it remains only to prove u∗(0) = u0

and p∗(0) = p0. For this one proceeds exactly as in the proof of the initial conditions of

problem (37).
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6. Numerical experiments

In this section, we carry out numerical experiments for the perturbed Brinkman-

Forchheimer equations (37) but with non-homogeneous boundary conditions

∂tu ε + γ∆u ε + au ε + b |u ε|α u ε +∇pε = f , in ΩT ,

∇ · u ε + ε∂tpε = 0, in ΩT ,

u ε = uB, on ΣT ,

u ε(0) = u0, in Ω,

pε(0) = p0, in Ω,

(85)

where uB is an imposed velocity on the boundary and is assumed to be time-independent

below for convenience. Again, we first convert the perturbed Brinkman-Forchheimer

equations (85) into a variational formulation: Find u ε ∈ EΩT (uB) + L2(0, T,H 1
0 (Ω))

and pε ∈ L2(0, T,Q) such that

d

dt
〈u ε(t), v〉+ γ 〈∇u ε(t),∇v〉+ a 〈u ε(t), v〉

+b 〈|u ε(t)|α u ε(t), v〉 − 〈pε(t),∇ · v〉 = 〈f (t), v〉 , ∀v ∈ H 1
0 (Ω),

〈∇ · u ε(t), q〉+ ε 〈∂tpε(t), q〉 = 0, ∀q ∈ Q,
〈u ε(0), v〉 = 〈u0, v〉 , ∀v ∈ H 1

0 (Ω),

〈pε(0), q〉 = 〈p0, q〉 , ∀q ∈ Q,
where Q = L2(Ω) and EΩT (uB) is the extension of uB from ΣT to ΩT .

To obtain numerical (approximated) solution of the above equations, we first apply

semi-implicit Euler time step to integrate with time: Find uk+1
ε ∈ EΩ(uB) + H 1

0 (Ω)

and pk+1
ε ∈ Q, k = 0, 1, 2, · · · , such that〈

uk+1
ε , v

〉
−
〈
uk
ε , v
〉

tk+1 − tk
+ γ

〈
∇uk+1

ε ,∇v
〉

+ a
〈
uk+1
ε , v

〉
+b
〈∣∣uk

ε

∣∣α uk+1
ε , v

〉
−
〈
pk+1
ε ,∇ · v

〉
= 〈f (tk+1), v〉 , ∀v ∈ H 1

0 (Ω),

〈
∇ · uk+1

ε , q
〉

+ ε

〈
pk+1
ε , q

〉
−
〈
pkε , q

〉
tk+1 − tk

= 0, ∀q ∈ Q,〈
u0
ε , v
〉

= 〈u0, v〉 , ∀v ∈ H 1
0 (Ω),〈

p0
ε , q
〉

= 〈p0, q〉 , ∀q ∈ Q,
where EΩ(uB) is the extension of uB from Σ to Ω.

We now carry out spatial discretization. We assume a rectangular mesh and we adopt

the lowest-order Raviart-Thomas elements for our finite element spaces Vh ⊂ H(Ω; div)

and Qh ⊂ Q. That is, we let the approximating subspaces Vh × Qh of H(Ω; div) × Q
be the zeroth order Raviart-Thomas space (RT0 ) of the rectangular partition. For

example, for two-dimensional domain Ω , it is defined as

Vh = {v ∈ H(Ω; div) : v |R ∈ Q1,0(R)×Q0,1(R), R ∈ Th} ,
Qh =

{
w ∈ L2(Ω) : w|R ∈ Q0,0(R), R ∈ Th

}
,
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Computed velocity profiles through the cavity center (a) u component along

the vertical line through the cavity center for various parameters gamma and b; (b) v

component along the horizontal line through the cavity center for various paramters

gamma and b; (c) u component along the vertical line through the cavity center for

various paramters gamma; (d) v component along the horizontal line through the cavity

center for various paramters gamma; (e) u component along the vertical line through

the cavity center for various paramters b; (f) v component along the horizontal line

through the cavity center for various paramters b
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where, we denote by Qi,j(R) the space of polynomials of degree less than or equal to i

(or j ) in the first (or second) variable restricted to R.

If taking uk+1
ε ∈ Vh and v ∈ Vh, all terms in the above equations make sense except

the term γ
〈
∇uk+1

ε ,∇v
〉

because Vh is not a subspace of H 1
0 (Ω). To overcome this

difficulty, we apply an interpolation IC,h from Vh to the continuous piecewise linear

space VC
h . Now, the fully discrete scheme reads: Find uk+1

ε,h ∈ EΩ(uB) + Vh and

pk+1
ε,h ∈ Qh, k = 0, 1, 2, · · · , such that〈
uk+1
ε,h , v

〉
−
〈
uk
ε,h, v

〉
tk+1 − tk

+ γ
〈
∇IC,huk+1

ε,h ,∇IC,hv
〉

+ a
〈
uk+1
ε,h , v

〉
+b
〈∣∣uk

ε,h

∣∣α uk+1
ε,h , v

〉
−
〈
pk+1
ε,h ,∇ · v

〉
= 〈f (tk+1), v〉 , ∀v ∈ Vh,

〈
∇ · uk+1

ε,h , q
〉

+ ε

〈
pk+1
ε,h , q

〉
−
〈
pkε,h, q

〉
tk+1 − tk

= 0, ∀q ∈ Qh,〈
u0
ε,h, v

〉
= 〈u0, v〉 , ∀v ∈ Vh,〈

p0
ε,h, q

〉
= 〈p0, q〉 , ∀q ∈ Qh.

We implement the above finite element scheme in MATLAB. In each time step, a linear

algebraic system is solved. We run a large number of time steps to ensure that we reach

the steady state solution.

Figures 1(a–f) are numerical results of the lid-driven cavity flow (a widely-used

benchmark case for testing Navier-Stokes flow) applied to our Brinkman-Forchheimer

equation system. In all example, we set ε = 0.01, a = 1 and α = 1, and we change the

parameters γ and b to study the influence of the parameters. It is clear from the plots

that the viscosity γ has a strong influence on the velocity profiles; in particular, when

viscosity is increased, the dragging movement on the top of the domain (i.e. on the lid)

has a stronger affect to the velocity in deeper part of the domain. The Forchheimer

parameter b does not have that significant impact as the viscosity does though in this

example.
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