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Abstract. We consider the Navier-Stokes equations with pressure boundary

conditions in the case of a bounded open set, connected of class C 1,1 of R3. We
prove existence of solution by using a fixed point theorem over the type-Oseen

problem. This result was studied in [5] in the Hilbertian case. In our study we
give the Lp-theory for 1 < p < ∞.

1. Introduction. Let Ω be a bounded open set, connected of class C 1,1 of R3 with
boundary Γ. Let Γi, 0 ≤ i ≤ I, denote the connected components of the boundary
Γ, Γ0 being the boundary of the only unbounded connected component of R3 \ Ω.
We do not assume that Ω is simply-connected but we suppose that there exist J
connected open surfaces Σj , 1 ≤ j ≤ J , called ’cuts’, contained in Ω, such that each
surface Σj is an open subset of a smooth manifold. The boundary of each Σj is

contained in Γ. The intersection Σi ∩ Σj is empty for i 6= j, and finally the open
set Ω◦ = Ω \ ∪Jj=1Σj is simply-connected.

We are interested to the study of solutions to the Navier-Stokes equations:
−∆u + u · ∇u +∇π = f in Ω,

divu = χ in Ω,

u × n = g and π = π0 on Γ,∫
Γi

u · n dσ = 0, i = 1, . . . , I.

(1)

This type of boundary conditions appears in a large number of physical situations, as
for instance in case od pipelines, blood vessels, different hydraulic systems involving
pumps. Our goal here is to prove the existence of weak solutions for small data in
Lp-theory with 1 < p < ∞. The existence of solutions in H 1(Ω) × L2(Ω) can be
directly obtained by the Lax-Milgram Lemma, without suppose the regularity of Ω.
We can next, obtain weak solutions in W 1,p(Ω) × Lp(Ω) for 3

2 < p < 3 by using
the fixed point technique over the type-Oseen equations. For a future work, the
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study of these last equations will be very useful for a more complete analysis of the
Navier-Stokes equations, particularly for the existence of very weak solutions.

Before stating our results, we introduce some functions spaces. Let Lp(Ω) denotes
the usual vector-valued Lp−space over Ω, 1 < p <∞. Let us define the spaces:

H p(curl,Ω) = {v ∈ Lp(Ω); curl v ∈ Lp(Ω)} ,

with the norm

‖v‖H p(curl,Ω) =
(
‖v‖pLp(Ω) + ‖curl v‖pLp(Ω)

) 1
p

,

H p(div,Ω) = {v ∈ Lp(Ω); div v ∈ Lp(Ω)} ,

with the norm

‖v‖H p(div,Ω) =
(
‖v‖pLp(Ω) + ‖div v‖pLp(Ω)

) 1
p

and X p(Ω) = H p(curl,Ω)∩H p(div,Ω), equipped with the graph norm. As in the
case of Hilbert spaces, we can prove that D(Ω) is dense in H p(curl, Ω), H p(div, Ω)
and X p(Ω). We also define the subspaces:

H p
0 (curl,Ω) = {v ∈ H p(curl,Ω); v × n = 0 on Γ} ,

H p
0 (div,Ω) = {v ∈ H p(div,Ω); v · n = 0 on Γ} ,

X p
N (Ω) = {v ∈ X p(Ω); v × n = 0 on Γ} , X p

T (Ω) = {v ∈ X p(Ω); v · n = 0 on Γ}

and X p
0 (Ω) = X p

N (Ω) ∩X p
T (Ω). We introduce the spaces

H 1
σ (Ω) = {v ∈ H 1(Ω); div v = 0 in Ω}.

L s
σ(Ω) = {v ∈ L s(Ω); div v = 0 in Ω}.

We note that the space Dσ(Ω) is dense in Lsσ(Ω) (see [2, Lemma 7]).
Finally, we define the space

K p
N (Ω) = {v ∈ Lp(Ω), div v = 0, curl v = 0 in Ω and v × n = 0 on Γ}.

which is of finite dimension and is spanned by the functions ∇qNi , i = 1 . . . , I, where
qNi is the unique solution in W 2,p(Ω) of the problem

−∆qNi = 0 in Ω,

qNi |Γ0
= 0 and qNi |Γk

= constant, 1 ≤ k ≤ I,〈
∂n q

N
i , 1

〉
Γk

= δi k, 1 ≤ k ≤ I, and
〈
∂n q

N
i , 1

〉
Γ0

= −1.

(2)

The work is organised as follows: in the next section, we present some preliminary
results including the study of the existence of solution for the Stokes problem when
the pressure and the tangential velocity are given on the boundary. In Section 3,
we extend previous results for the Oseen problem inorder to obtain in Section 4 the
result for the Navier-Stokes equations using a fixed point technique.
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2. The Stokes problem. We first recall some results on the following Stokes
problem 

−∆u +∇π = f and divu = 0 in Ω,

u × n = g × n and π = π0 on Γ,

〈u · n , 1〉Γi = 0, 1 ≤ i ≤ I,
(3)

that we can find in [3]. The first two points of the following Theorem concerns the
existence of weak and strong solutions for the problem (3) when the data satisfy
some compatibilty condition. In the third point, we treat the case where the pressure
given by the previous points is equal to zero.

Theorem 2.1.
i) Let f, g, π0 with

f ∈ [H p′

0 (curl, Ω)]′, g× n ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ), (4)

satisfying the compatibility condition:

∀v ∈ K p′

N (Ω), 〈 f , v 〉Ω −
∫

Γ

π0 v · n ds = 0, (5)

where 〈·, ·〉Ω = 〈·, ·〉
[H p′

0 (curl ,Ω)]′×H p′
0 (curl ,Ω)

. Then, the Stokes problem (3) has a

unique solution (u, π) ∈W 1,p(Ω)× W 1,p(Ω) satisfying the estimate

‖u ‖W 1,p(Ω) + ‖π ‖W 1,p(Ω)≤C
(
‖ f ‖

[H p′
0 (curl,Ω)]′

+ ‖g× n‖W 1−1/p,p(Γ) +

+ ‖π0‖W 1−1/p,p(Γ)

)
.

ii) Moreover, if Ω is of class C 2,1, f ∈ Lp(Ω) and g × n ∈W 2−1/p,p(Γ), then the
solution (u, π) belongs to W 2,p(Ω)×W 1,p(Ω) and satisfies the estimate:

‖u ‖W 2,p(Ω) + ‖π ‖W 1,p(Ω)≤C
(
‖ f ‖Lp(Ω) + ‖g× n‖W 2−1/p,p(Γ) + ‖π0‖W 1−1/p,p(Γ)

)
.

iii) Moreover, if div f = 0 in Ω, π0 = 0 and g× n = 0 on Γ, then π = 0.

The folowing lemma gives some properties of normal traces of curl v for some
functions v .

Lemma 2.2. For any v ∈ H p(curl ; Ω), we have the relation:

curl v · n = divT (v× n) in the sense of W −1/p,p(Γ), (6)

where divT is the tangential divergence. If moreover, v × n ∈ W 2−1/p,p(Γ), then
curl v · n ∈W 1−1/p,p(Γ) with the estimate:

‖curl v · n‖W 1−1/p,p(Γ) ≤ C‖v× n‖W 2−1/p,p(Γ).

The above relation (5) is a necessary condition for the existence of solution for
the Stokes problem (3). Now, our goal is to see what happens precisely, when the
data do not satisfy the compatibility condition (5).

As will appear, the answer strongly depends on the following variant of the Stokes
problem (SN ) : Find functions u , π and constants ci for i = 1, . . . , I, such that:

(S ′N )


−∆u +∇π = f and divu = 0 in Ω,

u × n = g × n on Γ,

π = π0 on Γ0 and π = π0 + ci on Γi, 1 ≤ i ≤ I
〈u · n , 1〉Γi

= 0, 1 ≤ i ≤ I,



1116 CHÉRIF AMROUCHE AND NOUR EL HOUDA SELOULA

situation that we can be found also in the paper [5]. We recall the following result
proved in [3].

Theorem 2.3. Let f, g and π0 such that

f ∈ [H p′

0 (curl, Ω)]′, g× n ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ).

Then, the problem (S ′N ) has a unique solution u ∈ W 1,p(Ω), π ∈ W 1,p(Ω) and
constants c1, . . . , cI satisfying the estimate:

‖u‖W 1,p(Ω)+‖π‖W 1,p(Ω) ≤ C
(
‖f‖

[H p′
0 (curl,Ω)]′

+‖g×n‖W 1−1/p,p(Γ)+‖π0‖W 1−1/p,p(Γ)

)
,

and where c1, . . . , cI are given by

ci = 〈f, ∇ qNi 〉Ω − 〈π0, ∇ qNi · n〉Γ (7)

(the brackets on Ω are the duality product between [H p′

0 (curl, Ω)]′ and H p′

0 (curl, Ω)).

Moreover, if Ω is of class C 2,1, f ∈ Lp(Ω) and g × n ∈ W 2−1/p,p(Γ), then u ∈
W 2,p(Ω).

Remark 1. Observe that if we suppose that the compatibility condition (5) is
verified, we obtain ci = 0 for all i = 1, . . . , I. Then, we are reduced to solve the
problem (S ′N ) without the constant ci and (S ′N ) is anything other than (SN ).

The assumption on f in Theorem 2.3 can be weakened by considering the space
defined for all 1 < r, p <∞:

H r, p
0 (curl, Ω) = {ϕ ∈ Lr(Ω); curlϕ ∈ Lp(Ω), ϕ× n = 0 on Γ},

which is a Banach space for the norm

‖ϕ‖H r, p
0 (curl,Ω) = ‖ϕ‖Lr(Ω) + ‖curlϕ‖Lp(Ω).

The proof of the following lemma is similar to that of ([2, Lemma 8]), although
the functional spaces are changed.

Lemma 2.4. The space D(Ω) is dense in H r, p
0 (curl, Ω)

Proof. In a first step, we consider that Ω is strictely star-shaped with respect to one
of its points which is taken as the origin. Then, for any ϕ ∈ H r, p

0 (curl, Ω), we take

ϕ̃ its extension by zero to R3. Thus, ϕ̃ ∈ Lr(R3) and as curl ϕ̃ = c̃urlϕ ∈ Lp(R3),
then ϕ̃ ∈ H r, p

0 (curl, R3). For θ < 1, we define the functions:

ϕ̃θ(x ) = ϕ̃(
x

θ
), for a.e x ∈ R3.

Since supp ϕ̃θ ⊂ θΩ ⊂ Ω, the function ϕ̃θ has a compact support in Ω. Moreover,
ϕ̃θ ∈ H r, p

0 (curl, R3) and

lim
θ→1

ϕ̃θ = ϕ̃ in H r, p
0 (curl, R3).

The result is then proved by regularization. Let ρ ∈ D(R3), be a smooth C∞
function with compact support, such that ρ ≥ 0,

∫
R3 ρ(x) dx = 1. For ε > 0, let

ρε denote the function x 7−→ ( 1
ε3 )ρ(xε ). As ε → 0, ρε converges in the distribution

sence to the Dirac distribution. As a consequence, ρε ∗ ϕ̃θ|Ω belongs to D(Ω) and

lim
ε→0

lim
θ→1

ρε ∗ ϕ̃θ = ϕ̃ in H r, p
0 (curl, R3).

The result follows because ϕ is the limit in H r, p
0 (curl, Ω) of the restriction of the

functions ρε ∗ ϕ̃θ to Ω. In the case where Ω is not star-shaped, we have to recover
Ω which is Lipschitz by a finite number of star open sets.
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The following lemma is classical

Lemma 2.5. Let f ∈ [H r, p
0 (curl, Ω)]′. Then, there exist F ∈ Lr

′
(Ω) and ψ ∈

Lp
′
(Ω) such that:

f = F + curlψ. (8)

Conversely, if f satisfies (8), then f ∈ [H r, p
0 (curl, Ω)]′.

Proof. We set E = Lr(Ω)× Lp(Ω) endowed whith the norm

‖v‖E = ‖v‖Lr(Ω) + ‖curl v‖Lp(Ω).

The application T : v ∈ H r, p
0 (curl, Ω) 7→ (v , curlv) ∈ E is an isometry from

H r, p
0 (curl, Ω) into E . Hence, with each g ∈ [H r, p

0 (curl, Ω)]′, we associate the
element g∗ ∈ (R(T ))′ such that

∀v ∈ H r, p
0 (curl, Ω), 〈 g , v 〉[H r, p

0 (curl,Ω)]′×H r, p
0 (curl,Ω) = 〈 g∗, Tv 〉(R(T ))′×R(T ).

By the Hahn-Banach Theorem , g∗ can be extended in Lr
′
(Ω) × Lp

′
(Ω) to an

element called (F , ψ). We deduce that:

∀v ∈ H r, p
0 (curl, Ω), 〈 g , v 〉[H r, p

0 (curl,Ω)]′×H r, p
0 (curl,Ω) =

∫
Ω

(F ·v + ψ · curl v) dx .

So, g is equal to F+curlψ in Ω. It is easy to verify that the reciprocal holds.

Theorem 2.6. We assume that Ω is of class C 2,1. Let f, g and π0 such that

f ∈ [H r′,p′

0 (curl, Ω)]′, g× n ∈W 1−1/p,p(Γ), π0 ∈W 1−1/r,r(Γ),

with r ≤ p and 1
r ≤

1
p + 1

3 . Then, the problem (S ′N ) has a unique solution u ∈
W 1,p(Ω), π ∈W 1,r(Ω) and constants c1, . . . , cI satisfying the estimate:

‖u‖W 1,p(Ω) + ‖π‖W 1,r(Ω) ≤ C
(
‖ f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖g× n‖W 1−1/p,p(Γ) +

+ ‖π0‖W 1−1/r,r(Γ)

)
,

and c1, . . . , cI are given by (7), where we replace the duality brackets on Ω by
〈 ·, · 〉Ω = 〈 ·, · 〉

[H r′,p′
0 (curl,Ω)]′×H r′,p′

0 (curl,Ω)
.

Proof. Due to the characterization (8), we can write f as f = F + curlψ, where
F ∈ Lr(Ω) and ψ ∈ Lp(Ω). By [3, Proposition 5.1], the following problem:

−∆w = curlψ and divw = 0 in Ω,

w × n = g × n on Γ,

〈w · n , 1〉Γi
= 0, 1 ≤ i ≤ I,

has a unique solution w ∈W 1,p(Ω) (note that for any 1 ≤ i ≤ I, 〈curlψ, ∇ qNi 〉Ω =
0). Now, by Theorem 2.3, the following problem

−∆ z +∇π = F and div z = 0 in Ω,

z × n = 0 on Γ,

π = π0 on Γ0 and π = π0 + ci on Γi, 1 ≤ i ≤I,
〈z · n , 1〉Γi = 0, 1 ≤ i ≤ I,

has a unique solution (z , π, c) ∈ W 2,r(Ω) ×W 1,r(Ω) × RI , where ci is given by
(7). Observe that, since 1

r ≤
1
p + 1

3 , W 2,r(Ω) ↪→ W 1,p(Ω). Setting u = w + z ,

then (u , π, c) is the unique solution of the problem (S ′N ).
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3. The type-Oseen problem. In this section, we are interested to the study of
the following type-Oseen problem:

−∆u + curla × u +∇π = f in Ω,

divu = 0 in Ω,

u × n = 0 on Γ,

π = π0 + ci on Γi, i = 0, . . . , I,∫
Γi

u · n dσ = 0, i = 1, . . . , I.

(9)

First, we will study the existence of weak solutions (u , π) ∈ H 1(Ω) × L2(Ω) with

curla ∈ L3/2(Ω) and f ∈ [H 2
0 (curl, Ω)]′. Next, we will give the good conditions to

ensure the existence of strong solutions (u , π) ∈W 2,p(Ω)×W 1,p(Ω) for p ≥ 6/5.
Remark that we can replace in this section the term curla by a general given vector

d in L3/2(Ω).

3.1. Weak solutions in H 1(Ω)× L2(Ω). We introduce the space:

VN =
{
v ∈ H 1(Ω); div v = 0 in Ω, v×n = 0 on Γ and

∫
Γi

v ·n = 0, 1 ≤ i ≤ I
}
.

Let us give the following lemma concerning a Poincaré type inequality which is
a consequence of [3, Corollary 3.2] (see also [5]).

Lemma 3.1. The space VN is a Hilbertian space and the semi norm:

v 7→
(∫

Ω

|curl v|2
)1/2

(10)

is a norm on VN equivalent to the full norm of H 1(Ω).

Before establishing the result of existence of a weak solution for the problem (9),
we will see in what functional space it is reasonable to find the pressure π appearing
in (9), knowing that we are first interesting to velocity fields in u ∈ H 1(Ω) with

f ∈ L6/5(Ω). With a such vector u , we have curla × u ∈ L 6/5(Ω) ↪→ H −1(Ω).
Since ∆u ∈ H −1(Ω), we deduce from the first equation in (9) that ∇π ∈ H −1(Ω).
According to [1, Proposition 2.10], the pressure π belongs to L2(Ω). Furtheremore,

−∆π = div f − div (curla × u) in Ω,

so that ∆π ∈ W −1,6/5(Ω). Using the same arguments as in [2, Lemma 2], we
prove that the trace of π on Γ belongs to H −1/2(Γ) so that we must assume that
π0 ∈ H −1/2(Γ).

We have the following result.

Theorem 3.2. Let f ∈ L 6/5(Ω), π0 ∈ H −1/2(Γ) and a ∈ D′(Ω) such that curla ∈
L 3/2(Ω). Then, the problem:

Find (u, π, c) ∈ VN × L2(Ω)× RI+1 satisfying (9) with 〈π, 1〉Γ = 0 (11)

is equivalent to the problem: Find u ∈ VN such that

∀ v ∈ VN ,

∫
Ω

curlu ·curl v dx+

∫
Ω

(curla×u) ·v =

∫
Ω

f ·v dx−〈π0, v ·n〉Γ (12)
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and find constants c0, . . . , cI satisfying
∑I
i=0 ci mes Γi + 〈π0, 1〉Γ = 0 and such that

for any i = 1, . . . , I:

ci − c0 =

∫
Ω

f · ∇ qNi dx−
∫

Ω

(curla× u) · ∇ qNi dx− 〈π0, ∇ qNi · n〉Γ. (13)

Proof. i) Let (u , π, c) ∈ H 1(Ω) × L2(Ω) × RI+1, with 〈π, 1〉Γ = 0, solution of

the problem (9). It is clear that u ∈ VN and that
∑I
i=0 ci mes Γi + 〈π0, 1〉Γ = 0.

Let us check that u satisfies (12). Indeed, multiplying the first equation of (9) by
v ∈ VN , integrating by parts in Ω, we obtain∫

Ω

(−∆u +∇π) · v dx +

∫
Ω

(curla × u) · v dx =

∫
Ω

f · v dx , (14)

where we observe that −∆u +∇π belongs to L6/5(Ω). But Dσ(Ω)×D(Ω) is dense
in the space

M =
{

(u , π) ∈ H 1
σ (Ω)× L2(Ω); −∆u +∇π ∈ L6/5(Ω)

}
(see [3, Lemma 5.5] for a similar proof) and we have the following Green formula:
For any (u , π) ∈M and ϕ ∈ H 1

σ (Ω) with ϕ× n = 0 on Γ:∫
Ω

(−∆u +∇π) ·ϕ dx =

∫
Ω

curlu · curlϕdx + 〈π, ϕ · n〉Γ. (15)

Taking into account the boundary condition that verify the pressure π on Γ, we
have:

∀ v ∈ VN , 〈π, v · n〉Γ = 〈π0, v · n〉Γ, (16)

which implies that u satisfies (12). It remains to prove the relation (13).
Now, let v ∈ H 1

σ (Ω) with v × n = 0 on Γ and set

v0 = v −
I∑
i=1

(

∫
Γi

v · n)∇ qNi . (17)

Observe that v0 belongs to VN . Multiplying the first equation of (9) by v , in-
tegrating by parts in Ω and using the relation (12) with the test function v0, we
obtain

−
I∑
i=1

(

∫
Γi

v · n)

∫
Ω

(curla × u) · ∇ qNi dx +

I∑
i=1

(

∫
Γi

v · n)

∫
Ω

f · ∇ qNi dx

=

I∑
i=1

(

∫
Γi

v · n)
(

(ci − c0) + 〈π0, ∇ qNi · n〉Γ
)
.

Testing with v = ∇ qNj , we deduce the required relation (13).

ii) Reciprocally, let u ∈ VN a solution of (12) and c0, . . . , cI constants satisfying the

condition
∑I
i=0 ci mes Γi+ 〈π0, 1〉Γ = 0 and (13). To prove the first equation of the

problem (9), we take v ∈ Dσ(Ω) as a test function in (12) and we use the De Rham’s

Theorem. Moreover, since ∆u ∈ H −1(Ω) and curla × u ∈ L6/5(Ω) ↪→ H −1(Ω),
we deduce that ∇π ∈ H−1(Ω). Due to [1], π belongs to L2(Ω). Now, applying
divergence operator to the first equations of problem (9), we obtain:

∆π = div f − div (curla × u) ∈W−1, 6/5(Ω). (18)
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Since π ∈ L2(Ω), we can prove that the trace of π on Γ belongs to H −1/2(Γ) (see
[2]). Then, since π is defined up to an additive constant, we can choose this constant
so that 〈π, 1〉Γ = 0.

It remains to prove the boundary condition on the pressure. Let v ∈ H 1
σ (Ω)

with v × n = 0 on Γ. Multiplying the first equation of (9) by v , integrating by
parts in Ω and using the decomposition (17), we obtain as before:

∫
Ω

curlu · curl v0 dx +

∫
Ω

(curla × u) · v0 dx −
∫

Ω

f · v0 dx + 〈π, v0 · n〉Γ

=

I∑
i=1

( ∫
Γi

v · n
) ∫

Ω

(curla × u) · ∇ qNi dx −
I∑
i=1

( ∫
Γi

v · n
) ∫

Ω

f · ∇ qNi dx +

+

I∑
i=1

( ∫
Γi

v · n
)
〈π, ∇ qNi · n〉Γ. (19)

Particularly, if
∫

Γi
v · n = 0 for any i = 1, . . . , I, we deduce from (12) that:

〈π, v0 · n〉Γ = 〈π0, v0 · n〉Γ. (20)

Using again (12), the decomposition (17) and (20), the relation (19) becomes:

〈π, v · n〉Γ = 〈π0, v0 · n〉Γ +

I∑
i=1

( ∫
Γi

v · n
) ∫

Ω

f · ∇ qNi dx −

−
I∑
i=1

( ∫
Γi

v · n
) ∫

Ω

(curla × u) · ∇ qNi dx .

As a consequence, from the relation (13) and the fact that
I∑
i=0

∫
Γi

v ·n = 0 we obtain:

〈π, v · n〉Γ = 〈π0, v · n〉Γ +

I∑
i=0

〈ci, v · n〉Γi = 〈π0 + c, v · n〉Γ, (21)

with c = ci on Γi for any i = 0, . . . , I.
Finally, let µ ∈ H 1/2(Γj) for any fixed j with 1 ≤ j ≤ I and we set

αj =

∫
Γj

µ.

We know that there exists a vector v ∈ H 1
σ (Ω) such that

v =

{
µn on Γj ,

αj ∇ qNj on Γ− Γj .
(22)

It is clear that v satisfies: v × n = 0 on Γ and
∫

Γ
v · n = 0. Hence, from (21), we

can write:

〈π − π0, µ〉Γj + αj〈π − π0, ∇ qNj · n〉Γ−Γj = cj

∫
Γj

µ− c0 αj

= (cj − c0)αj
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Using again (21) with v = ∇ qNj , we can write:

〈π − π0, ∇ qNj · n〉Γ−Γj = 〈π − π0, ∇ qNj · n〉Γ − 〈π − π0, ∇ qNj · n〉Γj

= cj − c0 − 〈π − π0, ∇ qNj · n〉Γj
.

As a consequence,

〈π − π0, µ〉Γj
= αj〈π − π0, ∇ qNj · n〉Γj

=
( ∫

Γj

µ
)
〈π − π0, ∇ qNj · n〉Γj

,

and then for any 1 ≤ j ≤ I, we deduce that π − π0 is constant on Γj :

π − π0 = dj on Γj with dj = 〈π − π0, ∇ qNj · n〉Γj . (23)

Next, as above, there exists a vector v ∈ H 1
σ (Ω) such that

v =

{
µn on Γ0,

βj ∇ qNj on Γ− Γ0,

with arbitrary fixed j satisfying 1 ≤ j ≤ I and where µ ∈ H 1/2(Γ0) and

βj = −
∫

Γ0

µ.

With the same arguments we obtain:

π − π0 = d0 on Γ0 with d0 = −〈π − π0, ∇ qNj · n〉Γ0
. (24)

Because 〈π, 1〉Γ = 0, it is easy to verify the relation:

I∑
j=0

dj mes(Γj) + 〈π0, 1〉Γ = 0.

Using (21) with v = ∇ qNj , we deduce that

dj − d0 = 〈π − π0, ∇ qNj · n〉Γ = cj − c0.

This finishs the proof, because the system (13) with the condition

I∑
j=0

cj mes(Γj) + 〈π0, 1〉Γ = 0

admits a unique solution c.

Theorem 3.3. Let f ∈ L6/5(Ω), curla ∈ L3/2(Ω) and π0 ∈ H −1/2(Γ), then the
problem (9) has a unique solution (u, π, c) ∈ H 1(Ω)×L2(Ω)×RI+1 with 〈π, 1〉Γ = 0
and we have the following estimates:

‖u‖H 1(Ω) ≤ C
(
‖ f ‖L6/5(Ω) + ‖π0‖H −1/2(Γ)

)
, (25)

‖π‖L2(Ω) ≤ C
(
1 + ‖curla ‖L3/2(Ω)

)(
‖ f ‖L6/5(Ω) + ‖π0‖H −1/2(Γ)

)
, (26)

where c = (c0, . . . , cI). Moreover, if π0 ∈ W 1/6,6/5(Γ) and Ω is C 2,1, then u ∈
W 2,6/5(Ω) and π ∈W 1,6/5(Ω).
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Proof. i) We suppose that f ∈ L6/5(Ω), curla ∈ L3/2(Ω) and π0 ∈ H −1/2(Γ).
We know due to Theorem 3.2 that the problem (9) is equivalent to (12)-(13). Let
a(·, ·) : VN ×VN → R be the following bilinear continuous form:

∀u , v ∈ VN , a(u , v) =

∫
Ω

curlu · curl v dx +

∫
Ω

(curla × u) · v dx . (27)

Using Lemma 3.1 and the fact that for any v ∈ VN we have:∫
Ω

(curla × v) · v = 0,

we deduce that the form a(·, ·) is coercive. Hence, by the Lax-Milgram theorem,
problem (9) has a unique solution (u , π, c) ∈ H 1(Ω) × L2(Ω) × RI+1 satisfying
the estimate (25). The estimate (26) can be obtained by using the fact that the
pressure π verifies:

−∆π = div f + div (curla × u) in Ω and π = π0 + ci on Γi, 0 ≤ i ≤ I. (28)

ii) Now, we suppose that π0 ∈W 1/6,6/5(Γ). Let (u , π, c) ∈ H 1(Ω)×L2(Ω)×RI+1

the solution of (9) given by step i). Since the pressure π verifies (28), we deduce
directly that π ∈ W 1,6/5(Ω). The velocity u is then a solution of the following
problem: 

−∆u = F and divu = 0 in Ω,

u × n = 0 on Γ,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

with F = f −∇π − curla × u ∈ L6/5(Ω). We deduce by Theorem 2.1 point (iii)

that u ∈W 2,6/5(Ω).

Remark 2. Even if the pressure π change in π − c0, the system (9) is equivalent
to the following type-Oseen problem:

(OSN )


−∆u + curla × u +∇π = f and divu = 0 in Ω,

u × n = 0 on Γ,

π = π0 on Γ0, and π = π0 + αi, i = 1, . . . , I, on Γi,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

where the unknowns constants satisfy for any i = 1, . . . , I:

αi =

∫
Ω

f · ∇ qNi dx −
∫

Ω

(curla × u) · ∇ qNi dx − 〈π0, ∇ qNi · n〉Γ.

But, it is clear that the new pressure π does not satisfy the condition 〈π, 1〉Γ = 0.

Remark 3. If we suppose that f ∈ [H 6,2
0 (curl, Ω)]′, curla ∈ L3/2(Ω) and π0 ∈

H−1/2(Γ), then the problems (11) and (12)-(13) are again equivalent. The proof
is similar to that of Theorem 3.2 with the difference that we use here the duality
brackets between [H 6,2

0 (curl, Ω)]′ and H 6,2
0 (curl, Ω) in place of the integral on Ω

in the right hand side of (12) and the density of Dσ(Ω)×D(Ω) in the space

M =
{

(u , π) ∈ H 1
σ (Ω)× L2(Ω); −∆u +∇π ∈ [H 6,2

0 (curl, Ω)]′
}
.

It is easy now to extend Theorem 3.3 to the case where f ∈ [H 6,2
0 (curl, Ω)]′,

the divergence operator does not vanish and the case of nonhomogeneous boundary
conditions.
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Theorem 3.4. Let f ∈ [H 6,2
0 (curl, Ω)]′, curla ∈ L3/2(Ω), χ ∈ W 1,6/5(Ω), π0 ∈

H−1/2(Γ) and g ∈ H 1/2(Γ). Then the problem
−∆u + curla× u +∇π = f and divu = χ in Ω,

u× n = g× n on Γ,

π = π0 on Γ0, and π = π0 + αi, i = 1, . . . , I, on Γi,∫
Γi

u · ndσ = 0, i = 1, . . . , I,

(29)

has a unique solution (u, π, α) ∈ H 1(Ω)× L2(Ω)× RI verifying the estimate:

‖u‖H 1(Ω) ≤ C
(
‖ f ‖[H 6,2

0 (curl,Ω)]′ + ‖π0‖H−1/2(Γ) +
(
1 + ‖curla‖L3/2(Ω)

)
×

×
(
‖χ‖W 1,6/5(Ω) + ‖ g ‖H 1/2(Γ)

))
, (30)

‖π‖L2(Ω) ≤ C
(
1 + ‖curla‖L3/2(Ω)

)(
‖ f ‖[H 6,2

0 (curl,Ω)]′ + ‖π0‖H−1/2(Γ) +

+
(
1 + ‖curla‖L3/2(Ω)

)
×
(
‖χ‖W 1,6/5(Ω) + ‖ g ‖H 1/2(Γ)

))
,

where α = (α1, . . . , αI). Moreover, if f ∈ L6/5(Ω), π0 ∈ W 1/6,6/5(Γ), g ∈
W 7/6,6/5(Γ) and Ω is C 2,1, then u ∈W 2,6/5(Ω) and π ∈W 1,6/5(Ω).

Proof. i) Let g ∈ H 1/2(Γ). We know that there exists w ∈ H 1(Ω) such that w = g
on Γ and verifying:

‖w‖H 1(Ω) ≤ C‖g‖H 1/2(Γ). (31)

Let θ ∈ H2(Ω) the unique solution of the problem:

∆ θ = divw − χ in Ω and θ = 0 on Γ, (32)

and we set u0 = −∇ θ + w . Then u0 ∈ H 1(Ω) and satisfies:

divu0 = χ in Ω and u0 × n = g × n on Γ,

with

‖u0‖H 1(Ω) ≤ C
(
‖χ‖W 1,6/5(Ω) + ‖g‖H 1/2(Γ)

)
. (33)

We know by Remark 3 that there exists a unique (z , π, α) ∈ H 1(Ω)×L2(Ω)×RI
solution of

−∆ z + curla × z +∇π = F 0 and div z = 0 in Ω,

z × n = 0 on Γ,

π = π0 on Γ0, π = π0 + αi, i = 1, . . . , I on Γi,∫
Γi

z · n dσ = 0,

(34)

where F 0 = f + ∆u0 − curla × u0. Observe that ∆u0 = ∇χ− curl (curlu0) ∈
[H 6,2

0 (curl, Ω)]′ which implies that F 0 ∈ [H 6,2
0 (curl, Ω)]′. Moreover, using the

estimate (33), z satisfies the estimate:

‖z‖H 1(Ω) ≤ C
(
‖f ‖[H 6,2

0 (curl,Ω)]′ + ‖π0‖H−1/2(Γ) +
(
1 + ‖curla‖L3/2(Ω)

)
×

×
(
‖χ‖W 1,6/5(Ω) + ‖g‖H 1/2(Γ)

))
. (35)
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In addition, using again (33), the pressure π satisfies the estimate:

‖π‖L2(Ω) ≤ C
(
1 + ‖curla‖L3/2(Ω)

)(
‖f ‖[H 6,2

0 (curl,Ω)]′ +
(
1 + ‖curla‖L3/2(Ω)

)
×

×
(
‖χ‖W 1,6/5(Ω) + ‖g‖H 1/2(Γ)

)
+ ‖π0‖H−1/2(Γ)

)
.

Finally, the pair of functions (u , π) = (z + u0), π) is the required solution.

ii) Now, we suppose that f ∈ L6/5(Ω), π0 ∈ W 1/6,6/5(Γ) and g ∈ W 7/6,6/5(Γ).
Let (u , π, α) ∈ H 1(Ω) × L2(Ω) × RI the solution of (29) given by step i). Since
the pressure π verifies

−∆π = div f + ∆χ− div (curla × u) in Ω,

where the right hand side belongs to W −1,6/5(Ω), then π ∈ W 1,6/5(Ω). The
velocity u is then a solution of the following problem:

−∆u = F and divu = χ in Ω,

u × n = g × n on Γ,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

with F = f −∇π−curla×u ∈ L6/5(Ω). We set z = curlu . Then the function z

satisfies: z ∈ L6/5(Ω), div z = 0 in Ω and curl z = F +∇χ ∈ L6/5(Ω). Moreover,

since u×n ∈W 7/6,6/5(Γ), applying Lemma 2.2 we obtain that z ·n ∈W 1/6,6/5(Γ).

So, from [3], we deduce that z belongs to W 1,6/5(Ω) and then u ∈W 2,6/5(Ω).

3.2. Strong solutions. In the rest of this paper, we suppose that Ω is C 2,1. In
this subsection, we are interested in the study of strong solutions for the system
(OSN ). When p < 3

2 , because the embedding W 2,p(Ω) ↪→ W 1,p∗(Ω), the term
curla × u ∈ Lp(Ω) and we can use the regularity results on the Stokes problem.

But this is not more the case when p ≥ 3
2 and that curla belongs only to L3/2(Ω).

We give in the following theorem the good conditions to ensure the existence of
strong solutions.

Theorem 3.5. Let p ≥ 6/5,

f ∈ Lp(Ω), π0 ∈W 1−1/p,p(Γ), curla ∈ Ls(Ω)

with

s =
3

2
if p <

3

2
, s = p if p >

3

2
, s =

3

2
+ ε if p =

3

2
,

for some arbitrary ε > 0. Then, the solution (u, π) given by Theorem 3.3 belongs
to W 2,p(Ω)×W 1,p(Ω) and satisfies the estimate:

‖u‖W 2,p(Ω) +‖π‖W 1,p(Ω) ≤ C
(
1+‖curla‖Ls(Ω)

)(
‖f‖Lp(Ω) +‖π0‖W 1−1/p,p(Γ)

)
. (36)

Proof. We know by Theorem 3.3 that the solution (u , π) belongs to W 2,6/5(Ω)×
W 1,6/5(Ω). We set b = curla . Then b ∈ Lsσ(Ω). Since the space Dσ(Ω) is dense in
Lsσ(Ω), there exists a sequence bλ ∈ Dσ(Ω) such that bλ converges to b in Ls(Ω) as
λ→ 0. Therefore, we search for (uλ, πλ, αλ) ∈W 2,p(Ω)×W 1,p(Ω)×RI solution
of the problem:
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(OSN )λ


−∆uλ + bλ × uλ +∇πλ = f and divuλ = 0 in Ω,

uλ × n = 0 on Γ,

πλ = π0 on Γ0 and πλ = π0 + αλi , i = 1, . . . , I, on Γi,∫
Γi

uλ · n dσ = 0, i = 1, . . . , I,

with αλ = (αλ1 , . . . , α
λ
I ). Remember that from above we can obtain a unique so-

lution (uλ, πλ) belonging to W 2,6/5(Ω) × W 1,6/5(Ω). Since uλ ∈ L6(Ω), then
bλ × uλ ∈ L6(Ω). Using the Stokes regularity, we deduce that (uλ, πλ) belongs
to W 2,p(Ω) × W 1,p(Ω) if p ≤ 6. Now, we suppose that p > 6. We know that
uλ ∈ W 2,6(Ω) and then uλ ∈ L∞(Ω) and bλ × uλ ∈ L∞(Ω). Again using the
Stokes regularity, we deduce that (uλ, πλ) belongs to W 2,p(Ω)×W 1,p(Ω). Thus,
we focus on the obtention of a strong estimate for (uλ, πλ) independently from λ.
Let ε > 0 with 0 < λ < ε/2. We consider:

bλ = bε1 + bελ, 2 where bε1 = b̃ ? ρε/2 and bελ, 2 = bλ − bε1, (37)

being b̃ the extension by zero of b to R3 and ρε/2 the classical mollifier. By regularity
estimates for the Stokes problem, we have

‖uλ‖W 2,p + ‖πλ‖W 1,p ≤ C
(
‖f ‖Lp(Ω)+ ‖π0‖

W
1− 1

p
,p

(Γ)
+

I∑
i=1

|αλi |+ ‖bλ × uλ‖Lp(Ω)

)
(38)

where the constant C is independent of λ. We note that

I∑
i=1

|αλi | ≤ C
(
‖f ‖L6/5(Ω)(1 + ‖bλ‖L3/2(Ω)) + ‖π0‖H −1/2(Γ)

)
≤ C

(
‖f ‖L6/5(Ω)(1 + ‖curla‖L3/2(Ω)) + ‖π0‖H −1/2(Γ)

)
. (39)

Now, we use the decomposition (37) in order to bound the term ‖bλ × uλ‖Lp(Ω).
We observe first that

‖bελ, 2‖Ls(Ω) ≤ ‖bλ − b‖Ls(Ω) + ‖b − b̃ ? ρε/2‖Ls(Ω) ≤ λ+ ε/2 ≤ ε. (40)

Recall that

W 2,p(Ω) ↪→ Lm(Ω)

with 1
m = 1

p −
2
3 if p < 3

2 , for any m ≥ 1 if p = 3
2 and for any m ∈ [1, ∞] if p > 3

2 .

Moreover the imbedding

W 2,p(Ω) ↪→ Lq(Ω)

is compact for any q < m if p < 3
2 , for any q ∈ [1, ∞[ if p = 3

2 and for any q ∈ [1, ∞]

if p > 3
2 . Then, using the Hölder inequality and the Sobolev imbedding, we obtain

‖bελ, 2 × uλ‖Lp(Ω) ≤ ‖bελ, 2‖Ls(Ω)‖uλ‖Lm(Ω) ≤ Cε‖uλ‖W 2,p(Ω), (41)

where 1
m = 1

p −
1
s , which is well defined because the definition of the real number

s. For the second estimate, we consider two cases.
i) Case p ≤ 3/2. Let r ∈ [ 3

2 , ∞] such that 1
p = 1

r + 1
6 and t ≥ 1 such that

1 + 1
r = 2

3 + 1
t satisfying:

‖bε1 × uλ‖Lp(Ω) ≤ ‖bε1‖Lr(Ω)‖uλ‖L6(Ω)

≤ ‖b‖L3/2(Ω)‖ρε/2‖Lt(R3)‖uλ‖L6(Ω).
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Using the estimate (25), we have

‖bε1 × uλ‖Lp(Ω) ≤ Cε‖b‖L3/2(Ω)

(
‖f ‖L6/5(Ω) + ‖π0‖H−1/2(Γ)

)
. (42)

Thanks to the following imbeddings

Lp(Ω) ↪→ L6/5(Ω), W 1−1/p,p(Γ) ↪→ H −1/2(Γ),

we obtain that

‖bε1 × uλ‖Lp(Ω) ≤ Cε‖b‖L3/2(Ω)

(
‖f ‖Lp(Ω) + ‖π0‖W 1−1/p,p(Γ)

)
. (43)

Using (41) and (43), we deduce from (38) and (39) that

‖uλ‖W 2,p(Ω) + ‖πλ‖W 1,p(Ω) ≤ C
(
‖f ‖Lp(Ω)(1 + ‖curla‖L3/2(Ω)) + ‖π0‖

W
1− 1

p
,p

(Γ)

)
,

(44)
where in this case s = 3

2 .
ii) Case p > 3/2. We know that for any ε′ there exists C ′ε > 0 such that

‖uλ‖L∞(Ω)≤ε′‖uλ‖W2,p(Ω)+Cε′‖uλ‖L6(Ω).

Moreover, we have

‖bλ × uλ‖Lp(Ω) ≤ ‖bλ‖Lp(Ω)‖uλ‖L∞(Ω). (45)

Thanks to (38), (39) and (25), we deduce the estimate (44) where we replace L3/2(Ω)
by Lp(Ω) because in this case s = p. The estimate (44) is uniform on λ, and therefore
we can extract subsequences, that we still call (uλ)λ, (πλ)λ and (αλi )λ, such that if
λ→ 0,

uλ −→ u weakly in W 2,p(Ω),

and

πλ −→ π weakly in W 1,p(Ω), αλi −→ αi for any i = 1, . . . , I.

It is easy to verify that (u , π, α) is solution of the problem (OS N ) where α =
(α1, . . . , αI), π = π0 on Γ0 and π = π0 + αi on Γi for any i = 1, . . . I. Moreover,
(u , π) satisfies the estimate (36).

Remark 4. Observe that to obtain the regularity, the value of p cannot be equal to
3
2 because of curla ∈ L3/2(Ω) and thus curla ×u can not be better than L3−ε(Ω)

(ε > 0). If we consider the case p = 3
2 (respectively p > 3

2 ), we must suppose that

curla ∈ L
3
2 +ε(Ω) for arbitrary ε > 0 (respectively curla ∈ Lp(Ω)).

We are now interested in the study of generalized solutions of the problem (29)
where u ∈ W 1,p(Ω) for 1 < p < ∞. As for the case p = 2, we choose f ∈
[H r′,p′

0 (curl, Ω)]′ with 1
r = 1

p + 1
3 . Observe that the pressure π is a solution of:{

∆π = div f − div (curla × u) + ∆χ in Ω,

π = π0 on Γ0 and π = π0 + αi on Γi.

If u ∈W 1,p(Ω), then u ∈ Lp∗(Ω) with 1
p∗ = 1

p −
1
3 if p < 3, p∗ arbitrary in [1, ∞[

if p = 3 and p∗ = ∞ if p > 3. Consequently, if we keep the same hypothesis on

curla ∈ L3/2(Ω) we have curla × u ∈ Lt(Ω) with t = r if p < 3, t < r = 3
2 if

p = 3 and t = 3
2 < r if p > 3. Consequently, if p < 3, we have ∆π ∈ W −1,r(Ω),

so that if π0 ∈ W 1−1/r,r(Γ), then π ∈ W 1,r(Ω). But, if p ≥ 3, ∆π /∈ W −1,r(Ω)

if we suppose only that curla ∈ L3/2(Ω). The next theorem gives the existence of
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solution u ∈W 1,p(Ω) with p > 2 provided that curla is in a space Ls(Ω) with s
large enough.

Theorem 3.6. Let p > 2. Let f ∈ [H r′,p′

0 (curl, Ω)]′, χ ∈ W 1,r(Ω) and g ∈
W 1−1/p,p(Γ). We suppose that π0 ∈ W 1−1/r,r(Γ) and curla ∈ Ls(Ω) with 1

r =
1
p + 1

3 and s satisfies:

s =
3

2
if 2 < p < 3, s =

3

2
+ ε if p = 3 and s = r if p > 3,

for some arbitrary ε > 0. Then the problem (29) has a unique solution (u, π, α) ∈
W 1,p(Ω)×W 1,r(Ω)× RI satisfying the estimate

‖u‖W 1,p(Ω) + ‖π‖W 1,r(Ω) ≤ C
(
1 + ‖curla‖Ls(Ω)

)2(‖f‖
[H r′,p′

0 (curl,Ω)]′
+

+‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ) + ‖χ‖W 1,r(Ω)

)
(46)

where α = (α1, . . . , αI).

Proof. As for the Stokes problem (S ′N ), where the external forces belong to the dual

space H p′

0 (curl, Ω), we can prove that the problem:
−∆u0 +∇ q0 = f , divu0 = χ in Ω

u0 × n = g × n on Γ,

q0 = 0 on Γ0 and q0 = αi on Γi, i = 1, . . . , I,∫
Γi

u0 · n dσ = 0, i = 1, . . . , I,

(47)

with

αi = 〈f , ∇ qNi 〉[H r′,p′
0 (curl,Ω)]′×H r′,p′

0 (curl,Ω)
+

∫
Γ

χ∇ qNi · n ,

has a unique solution (u0, q0) ∈W 1,p(Ω)×W 1,r(Ω) satisfying the estimate

‖u0‖W 1,p(Ω)+‖q0‖W 1,r(Ω) ≤ C
(
‖f ‖

[H r′,p′
0 (curl,Ω)]′

+‖g‖W 1−1/p,p(Γ)+‖χ‖W 1,r(Ω)

)
.

(48)
Now, observe that with the values chosen for s and r, since u0 ∈ W 1,p(Ω) ↪→
Lp∗(Ω) and curla ∈ Ls(Ω), we can verify that curla × u0 ∈ Lr(Ω). Indeed, if
p < 3, then 1

p∗ = 1
p −

1
3 and 1

s + 1
p∗ = 1

r . If p = 3, then there exists ε > 0 such

that
1

3
2 + ε

+ 1
p∗ = 2

3 and if p > 3, then p∗ = ∞ and r = s. We note also that

with this choice of r, we have the imbedding W 2,r(Ω) ↪→ W 1,p(Ω) and r > 6/5
because p > 2. Finally, from Theorem 3.5, we deduce the existence of a unique
(z , θ) ∈W 2,r(Ω)×W 1,r(Ω) solution of
−∆ z + curla × z +∇ θ = −curla × u0, div z = 0 in Ω,

z × n = 0 on Γ,

θ = π0 on Γ0 and θ = π0 + βi on Γi, i = 1, . . . , I,∫
Γi

z · n dσ = 0, i = 1, . . . , I,

(49)
with

βi = −
∫

Ω

curla × (u0 + z ) · ∇ qNi dx −
∫

Γ

π0∇ qNi · n .
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Using (36) we have the estimate

‖z‖W 2,r(Ω) + ‖θ‖W 1,r(Ω)≤ C
(
1 + ‖curla‖Ls(Ω)

)(
‖curla‖Ls(Ω)

(
‖f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖g‖W 1−1/p,p(Γ) + ‖χ‖W 1,r(Ω)

)
+ ‖π0‖

W 1− 1
r
,r(Γ)

)
(50)

The pair (u , π) = (z + u0, q0 + θ) ∈ W 1,p(Ω) ×W 1,r(Ω) is a solution of (29).
Estimate (46) follows from (50) and (48).

Now, we will treat the case 3/2 ≤ p < 2 and first we consider the case where:
χ = 0 and g = 0. The case 1 < p < 3/2 can also be treated, but with more technical
difficulties.

We introduce the space:

V (Ω) =
{

(v , θ) ∈W 1,p′(Ω)×W 1,p∗′(Ω), div v ∈W 1,p∗
′

0 (Ω),

− curla × v +∇ θ ∈ [H p∗, p
0 (curl, Ω)]′, v × n = 0 on Γ,∫

Γi

v · n = 0, 1 ≤ i ≤ I and θ = 0 on Γ0, θ = constant on Γi

}
.

Proposition 3.7. We suppose that 3
2 ≤ p < 2. Let f ∈ [H r′,p′

0 (curl, Ω)]′, curla ∈
Ls(Ω) and π0 ∈W 1−1/r,r(Γ) with

r =
9 + 6ε

9 + 2ε
if p =

3

2
and r =

3p

3 + p
if

3

2
< p < 2, (51)

s =
3

2
+ ε if p =

3

2
and s =

3

2
if

3

2
< p < 2, (52)

where ε, ε′ > 0 are arbitrary. Then the problems:

Find (u, π, α) ∈W 1,p(Ω)×W 1,r(Ω)× RI satisfying (OSN ) (53)

and the variational formulation: Find (u, π, α) ∈ W 1,p(Ω) ×W 1,r(Ω) × RI with
u× n = 0 on Γ and

∫
Γi

u · n = 0 such that:
∀(w, θ) ∈ V(Ω) and d ∈ RI ,
〈u, −∆w− curla×w +∇ θ〉Ωp∗, p −

∫
Ω
π divwdx = 〈f, w〉Ωr′, p′ −

∫
Γ
π0 w · n,

∀i = 1, . . . , I, αi = 〈f, ∇ qNi 〉Ωr′, p′ −
∫

Ω
(curla× u) · ∇ qNi dx−

∫
Γ
π0∇ qNi · n.

(54)
are equivalent, where d = (d1, . . . , dI) and where the brackets 〈·, ·〉Ωp∗, p denotes

the duality [H p∗, p
0 (curl, Ω)]′ ×H p∗, p

0 (curl, Ω) and 〈·, ·〉Ωr′, p′ denotes the duality

[H r′, p′

0 (curl, Ω)]′ ×H r′, p′

0 (curl, Ω).

Proof. i) Let (u , π, α) ∈ W 1,p(Ω) ×W 1,r(Ω) × RI be a solution of (OSN ) and

let (w , θ) ∈ V (Ω). By the density of D(Ω) in the space H r′,p′

0 (curl, Ω) and in

H p∗,p
0 (curl, Ω), we obtain:

〈−∆u , w〉Ωr′, p′ =

∫
Ω

curlu · curlw dx

= 〈u , curl curlw〉Ωp∗, p

= 〈u , −∆w +∇divw〉Ωp∗, p .
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Oberve that since ∇ divw ∈ Lp
∗′

(Ω), we have ∇ divw ∈ [H p∗,p
0 (curl, Ω)]′. More-

over, it is clear that ∆w ∈ [H p∗,p
0 (curl, Ω)]′. Then, we can write:

〈u , −∆w +∇ divw〉Ωp∗, p = 〈u , −∆w〉Ωp∗, p , (55)

because
∫

Ω
u · ∇ divw dx = 0 since divu = 0 in Ω and divw = 0 on Γ. Next, as

curla × u +∇π ∈ [H r′,p′

0 (curl, Ω)]′, then

〈curla × u +∇π, w〉Ωr′, p′ =

∫
Ω

(curla × u) ·w dx +

∫
Ω

∇π ·w dx ,

where the integrals are well defined because curla ∈ Ls(Ω) with 1
s + 1

p∗ + 1
p′∗ = 1

and 1
r + 1

p′∗ = 1. Next, it is clear that∫
Ω

(curla × u) ·w dx = −
∫

Ω

(curla ×w) · u dx .

Also, since π ∈W 1,r(Ω) and w ∈ H p′∗,(p∗
′
)∗(div, Ω) we have∫

Ω

∇π ·w dx = −
∫

Ω

π divw dx +

∫
Γ

πw · n . (56)

where H p′∗, (p∗
′
)∗(div, Ω) =

{
v ∈ Lp

′∗
(Ω), div v ∈ L(p∗

′
)∗(Ω)

}
. In order to es-

tablish (56), we just check that 1
r∗ + 1

p′∗ ≤ 1 and we use the density of D(Ω)

in H p′∗, (p∗
′
)∗(div, Ω) (see [2]). Now, since divu = 0 in Ω we have for any θ ∈

W 1,p∗
′

(Ω):

0 = −
∫

Ω

θ divu dx =

∫
Ω

u · ∇ θ dx −
∫

Γ

θ u · n dσ.

Here too, the last Green formula is verified. Indeed, since u ∈W 1,p(Ω) ↪→ Lp
∗
(Ω)

wich implies that u ∈ H p∗, p(div, Ω). Let us summarize. We have obtained that:

〈f , w〉Ω r′, p′ = 〈u , −∆w〉Ω p∗,p −
∫

Ω

(curla ×w) · u dx −
∫

Ω

π divw dx

+

∫
Γ

π0 w · n +

∫
Ω

u · ∇ θ dx −
∫

Γ

θ u · n dσ.

Using the properties of w and θ, we obtain that (u , π) satisfies the first equation
in (54). With the same arguments used in Theorem 3.2, we can prove that the
constants αi, for 1 ≤ i ≤ I satisfy the last relation in (54).
ii) Reciprocally, let (u , π, α) ∈W 1,p(Ω)×W 1,r(Ω)×RI a solution of (54). First
choose w ∈ D(Ω) and θ = 0, then we deduce that

−∆u + curla × u +∇π = f in Ω.

Next, we choose w = 0 and θ ∈ D(Ω). Then, we obtain that divu = 0 in Ω.
We know that u × n = 0 on Γ and that

∫
Γi

u · n dσ = 0. It remains to prove

the boundary condition given on the pressure π. Let then w ∈ W 1,p′(Ω) with

w ×n = 0 on Γ and such that divw ∈W 1,p∗

0 (Ω) and let θ ∈W 1,p∗
′

(Ω). We obtain
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as previously,

〈f , w〉Ωr′, p′ = 〈u , −∆w〉Ωp∗, p +

∫
Ω

(
− curla ×w +∇ θ

)
· u dx −

−
∫

Ω

∇ θ · u dx −
∫

Ω

π divw dx +

∫
Γ

πw · n .

But, we can decompose w as

w = w −
I∑
i=1

( ∫
Γi

w · n
)
∇ qNi + z , (57)

with z =
∑I
i=1

( ∫
Γi

w ·n
)
∇ qNi . Setting w0 = w−z , then if −curla×w0 +∇ θ ∈

[H p∗, p
0 (curl, Ω)]′ we obtain:

〈f , w0〉Ωr′, p′ + 〈f , z 〉Ωr′, p′ = 〈u , −∆w0 − curla ×w0 +∇ θ〉Ωp∗, p (58)

−
∫

Ω

(curla × z ) · u −
∫

Ω

∇ θ · u −
∫

Ω

π divw0

+

∫
Γ

πw0 · n +

∫
Γ

π z · n . (59)

This last relation is valid for z = 0 and we deduce from (54) that:

−
∫

Ω

∇ θ · u dx +

∫
Γ

πw0 · n −
∫

Γ

π0 w0 · n = 0.

Choosing θ = 0 on Γ0 and θ = constant on Γi for any 1 ≤ i ≤ I, we obtain∫
Γ

(π − π0)w0 · n = 0.

Now, we return to the relation (58) and we can write:∫
Γ

π z · n = 〈f , z 〉Ωr′, p′ +

∫
Ω

(curla × z ) · u dx

= 〈f , z 〉Ωr′, p′ −
∫

Ω

(curla × u) · z dx .

So that, using the decomposition (57) and the last relation in (54) we obtain that:∫
Γ

πw · n =

∫
Γ

πw0 · n +

∫
Γ

π z · n

=

∫
Γ

π0 w0 · n + 〈f , z 〉Ωr′, p′ −
∫

Ω

(curla × u) · z dx

=

∫
Γ

π0 w0 · n +

I∑
i=1

(

∫
Γi

w · n)〈f , ∇ qNi 〉Ωr′, p′

−
I∑
i=1

(

∫
Γi

w · n)

∫
Ω

(curla × u) · ∇ qNi dx . (60)

This implies that∫
Γ

πw · n =

∫
Γ

π0 w0 · n +

I∑
i=1

(∫
Γi

w · n
)(∫

Γ

π0∇ qNi · n + αi

)
,

Using the decomposition (57), we have
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∫
Γ

π0 w0 · n +

I∑
i=1

(∫
Γi

w · n
)∫

Γ

π0∇ qNi · n =

∫
Γ

π0 w · n ,

As a consequence∫
Γ

πw · n =

∫
Γ

π0 w · n +

I∑
i=1

αi

∫
Γi

w · n

=

∫
Γ

(π0 + C)w · n ,

with C = 0 on Γ0 and C = αi on Γi. We use exactly the same arguments as in
Theorem 3.2 and we obtain that:

π = π0 on Γ0 and π = π0 + αi on Γi,

which finishes the proof.

Now, we are going to solve the problem (54).

Theorem 3.8. Under the assumptions of Proposition 3.7, the problem (54) has a
unique solution (u, π,α) satisfying the estimate:

‖u‖W 1,p(Ω) ≤ C(1 + ‖curla‖Ls(Ω))
2(‖ f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/r,r(Ω)), (61)

‖π‖W 1,r(Ω) ≤ C(1 + ‖curla‖Ls(Ω))
3(‖ f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/r,r(Ω)) (62)

Proof. i) Since p′ > 2, we know due to Theorem 3.6 that for any F belonging to

[H p∗,p
0 (curl, Ω)]′ and ϕ belonging to W 1,p∗

′

0 (Ω), there exists a unique (w , θ, d) ∈
W 1,p′(Ω)×W 1,p∗

′

(Ω)× RI with divw ∈W 1,p∗
′

0 (Ω) such that:

−∆w − curla ×w +∇θ = F , divw = ϕ in Ω,

w × n = 0 on Γ,

θ = 0 on Γ0 and θ = di on Γi, 1 ≤ i ≤ I,∫
Γi

w · n = 0, 1 ≤ i ≤ I,

(63)

satisfying the estimate:

‖w‖W 1,p′(Ω)+‖θ‖W 1,p∗′(Ω)
≤C

(
1+‖curla‖Ls(Ω)

)2(‖F‖
[H p∗,p

0 (curl,Ω)]′
+‖ϕ‖

W 1,p∗′(Ω)

)
,

(64)
where d = (d1, . . . , dI) and

di = 〈F ,∇ qNi 〉Ω +

∫
Ω

(curla ×w) · ∇ qNi dx , 1 ≤ i ≤ I.

Remark that we can apply Theorem 3.6 because the real s defined in (52) satisfies
the assumptions of Theoreme 3.6 where however we must replace p by p′. Indeed,
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since p′ > 2, we have s = 3
2 if 2 < p′ < 3, s = 3

2 + ε if p′ = 3. Now, using (64) we
obtain: ∣∣∣〈f ,w〉Ωr′, p′ −

∫
Γ

π0w · n
∣∣∣

≤ ‖f ‖
[H r′,p′

0 (curl,Ω)]′
‖w‖W 1,p′ (Ω) + ‖π0‖

W 1− 1
r
,r(Γ)
‖w · n‖

W
1− 1

p′ ,p
′
(Γ)

≤ C
(
‖f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖π0‖
W 1− 1

r
,r(Γ)

)
(1 + ‖curla‖Ls(Ω))

2 ×

×
(
‖F‖

[H p∗,p
0 (curl,Ω)]′

+ ‖ϕ‖
W 1,p∗′ (Ω)

)
.

In other words, the linear mapping

(F, ϕ) −→ 〈f ,w〉Ωr′, p′ −
∫

Γ

π0w · n ,

defines an element (u , π) of the dual space of [H p∗,p
0 (curl, Ω)]′×W 1,p∗

′

0 (Ω) which

means that (u , π) ∈ H p∗,p
0 (curl, Ω)×W −1,p∗(Ω) and satisfies:

〈u , F 〉Ωp∗, p − 〈π, ϕ〉W −1,p∗ (Ω)×W 1,p∗′
0 (Ω)

= 〈f , w〉Ωr′, p′ −
∫

Γ

π0w · n , (65)

with

‖u‖H p∗,p(curl,Ω) + ‖π‖W −1,p∗ (Ω) ≤ C(1 + ‖curla‖Ls(Ω))
2 ×

× (‖f ‖
[H r′,p′

0 (curl,Ω)]′
+ ‖π0‖W 1−1/r,r(Γ)). (66)

We have then

〈u ,−∆w − curla ×w +∇ θ〉Ωp∗, p − 〈π,divw〉
W −1,r(Ω)×W 1,r′

0 (Ω)
=

= 〈f , w〉Ωr′, p′ −
∫

Γ

π0w · n (67)

for any (w , θ) ∈W 1,p′(Ω)×W 1,p∗
′

(Ω) with divw ∈W 1,p∗
′

0 (Ω) satisfying w×n = 0

on Γ,
∫

Γi
w · n = 0 for any 1 ≤ i ≤ I, −curla ×w +∇θ ∈ [H p∗,p

0 (curl, Ω)]′, θ =

0 on Γ0 and finally θ = constant on Γi. Then, we have proved that (u , π) ∈
H p∗,p

0 (curl, Ω)×W −1,p∗(Ω) satisfies the first equation in (54)

ii) We prove now that u ∈W 1,p(Ω), π ∈ W 1,r(Ω) and that the second equation
in (54) is verified. We choose w = 0 and θ ∈ D(Ω). Then, we obtain divu = 0 in

Ω. Since u ∈ H p∗,p
0 (curl, Ω) and divu = 0 in Ω, we deduce that u ∈W 1,p(Ω).

The estimate (61) follows from (66). Next, we choose w ∈ D(Ω) and θ ∈ D(Ω), we
obtain

−∆u + curla × u +∇π = f in Ω. (68)

But curla ∈ Ls(Ω) and u ∈ Lp∗(Ω) with s defined in (52), we have then curla ×
u ∈ Lr(Ω) with r defined in (51). So, since curla×u+∇π ∈ [H r′,p′

0 (curl, Ω)]′ ↪→
W −1,r∗(Ω), we have ∇π ∈ W −1,r∗(Ω) and then also π ∈ Lr∗(Ω). This means in
particular that

〈π,divw〉
W −1,p∗ (Ω)×W 1,p∗′

0 (Ω)
=

∫
Ω

π divw ,

because we have divw ∈ L(p∗
′
)∗(Ω) = Lp

′
(Ω) with 1

r∗ + 1
p′ ≤ 1.

It remains to show that
∫

Γi
u · n dσ = 0 and π ∈ W 1,r(Ω). For the first point,

we choose in (67) w = 0 and θ ∈W 1,p∗
′

(Ω) with θ = 0 on Γ0 and θ = δij on Γj for
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any 1 ≤ j ≤ I and fixed i in [1, I]. We deduce from (67) that
∫

Γi
u · n dσ = 0 for

any i in [1, I]. For the second point, we know that π satisfies

∆π = div f − div (curla × u) in Ω,

and as in the point ii) in the proof of Theorem 3.2, we can prove that π verifies the
boundary conditions:

π = π0 on Γ0 and π = π0 + αi on Γi.

Then, using (51) and (52) we can verify that ∆π ∈ W −1,r(Ω). So, π ∈ W 1,r(Ω)
and satisfies the estimate:

‖π‖W 1,r(Ω)≤ C (‖f ‖
[H r′,p′

0 (curl,Ω)]′
+ ‖curla‖Ls(Ω)‖u‖Lp∗(Ω) + ‖π0‖

W 1− 1
r
,r(Γ)

)(69)

Finally the estimate (62) follows from (69) and (66).

The next theorem give an extension of the previous one to the case of the problem
(29).

Theorem 3.9. We suppose that p < 2. Let f, χ, g, π0 and a such that:

f ∈ [H r′,p′

0 (curl, Ω)]′, χ ∈W 1,r(Ω), g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/r,r(Γ),

and curla ∈ Ls(Ω) with r and s satisfies (51) and (52). Then the problem (29)
has a unique solution (u, π, α) ∈W 1,p(Ω)×W 1,r(Ω)×RI satisfying the estimates

‖u‖W 1,p(Ω) ≤ C
(
1 + ‖curla‖Ls(Ω)

)2((
1 + ‖curla‖Ls(Ω)

)(
‖f‖

[H r′,p′
0 (curl,Ω)]′

+ ‖g‖W 1−1/p,p(Γ) + ‖χ‖W 1,r(Ω)

)
+ ‖π0‖W 1−1/r,r(Γ)

)
(70)

‖π‖W 1,r(Ω) ≤ C
(
1 + ‖curla‖Ls(Ω)

)3((
1 + ‖curla‖Ls(Ω)

)(
‖f‖

[H r′,p′
0 (curl,Ω)]′

+ ‖g‖W 1−1/p,p(Γ) + ‖χ‖W 1,r(Ω)

)
+ ‖π0‖W 1−1/r,r(Γ)

)
(71)

where α = (α1, . . . , αI) with

αi = 〈f, ∇ qNi 〉Ωr′, p′ +

∫
Γ

(χ− π0)∇ qNi · n−
∫

Ω

(curla× n) · ∇qNi .

Proof. Let (u0, q0) ∈W 1,p(Ω)×W 1,r(Ω) such that (47) and satisfies the estimate
(48). Next, we consider (z , θ) ∈ W 1,p(Ω) ×W 1,r(Ω) solution of (49). We note

here that we appply Theroem 3.8 because curla×u0 ∈ [H r′, p′

0 (curl, Ω)]′. Indeed,

using (51) and (52), we have curla × u0 ∈ Lr(Ω) ↪→ [H r′, p′

0 (curl, Ω)]′. Moreover
using (61), we obtain that z satisfies the estimate:

‖z‖W 1,p ≤ C
(
1 + ‖curla‖Ls

)2(‖curla × u0‖[H r′, p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/r,r

)
≤ C

(
1 + ‖curla‖Ls

)2(‖curla × u0‖Lr(Ω) + ‖π0‖W 1−1/r,r(Γ)

)
≤ C

(
1 + ‖curla‖Ls

)2(‖curla‖Ls(Ω)‖u0‖W 1,p(Ω) + ‖π0‖W 1−1/r,r

)
.

Using the estimate (48), we deduce that z satisfies:

‖z‖W 1,p(Ω) ≤ C
(
1 + ‖curla‖Ls(Ω)

)2(‖curla‖Ls(Ω)

(
‖f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖g‖W 1−1/p,p(Γ) + ‖χ‖W 1,r(Ω)

)
+ ‖π0‖W 1−1/r,r(Γ)

)
. (72)
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Similarly, using (62) and (48), we obatin the estimate:

‖θ‖W 1,r(Ω) ≤ C
(
1 + ‖curla‖Ls(Ω)

)3(‖curla‖Ls(Ω)

(
‖f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖g‖W 1−1/p,p(Γ) + ‖χ‖W 1,r(Ω)

)
+ ‖π0‖W 1−1/r,r(Γ)

)
. (73)

Finally, the pair (u , π) = (z + u0, q0 + θ) ∈W 1,p(Ω) ×W 1,r(Ω) is a solution of
(29). Estimates (70) and (71) follows from (48), (72) and (73).

4. The Navier-Stokes problem. As a consequence of the previous study in the
previous sections, we want in this section to study the following Navier-Stokes
equations:

(NS N )



−∆u + curlu × u +∇π = f in Ω,

divu = χ in Ω,

u × n = g on Γ,

π = π0 on Γi and π = π0 + ci on Γi, i = 1, . . . , I,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

where f , χ, g , and π0 are given functions, ci are constants and we will denote by c
the vector c = (c1, . . . , cI).

In the search of a proof of the existence of generalized solution for the Navier-
Stokes equations (NS N ), we consider the case of small enough data.

Theorem 4.1. Let f ∈ [H r′,p′

0 (curl, Ω)]′, χ ∈ W 1,r(Ω), g ∈ W 1−1/p,p(Γ), π0 ∈
W 1−1/r,r(Γ) with 3

2 < p < 3 and r = 3p
3+p .

i) There exists a constant α1 > 0 such that, if

‖ f ‖
[H r′,p′

0 (curl,Ω)]′
+ ‖χ‖W 1,r(Ω) + ‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ) ≤ α1,

then, there exists a solution (u, π, c) ∈W 1,p(Ω)×W 1,r(Ω)×RI to problem (NS N )
verifying the estimate

‖u‖W 1,p(Ω) ≤ C
(
‖f‖

[H r′,p′
0 (curl,Ω)]′

+‖χ‖W 1,r(Ω)+‖g‖W 1−1/p,p(Γ)+‖π0‖W 1−1/r,r(Γ)

)
,

(74)
with ci = 〈f, ∇ qi〉Ωr′, p′ +

∫
Γ

(χ− π0)∇ qNi · n−
∫

Ω
(curlu× u) · ∇qNi .

ii) Moreover, there exists a constant α2 ∈]0, α1] such that this solution is unique, if

‖ f ‖
[H r′,p′

0 (curl,Ω)]′
+ ‖χ‖W 1,r(Ω) + ‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ) ≤ α2.

Proof. i)Existence: We begin to prove existence of generalized solutions. We want
to apply Banach’s fixed point theorem. The idea is to do this fixed point over the
Oseen problem (29). We are searching for a fixed point for the mapping T ,

T : W 1,p(Ω) −→ W 1,p(Ω)

a 7−→ u ,

where given a ∈W 1,p(Ω), T a = u is the unique solution of (29), where we replace
αi by ci, given by Theorem 3.6 and Theorem 3.9. In order to apply the fixed point
theorem, we have to define a neighborhood Bλ, in the form:

Bλ =
{
a ∈W 1,p(Ω), ‖a‖W 1,p(Ω) ≤ λ

}
.
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Let a1 and a2 ∈ Bλ. If we choose a contraction method, we must prove that: there
exists a constant θ ∈ ]0, 1[ such that

‖Ta1 − Ta2‖W 1,p(Ω) = ‖u1 − u2‖W 1,p(Ω) ≤ θ‖a1 − a2‖W 1,p(Ω). (75)

In order to estimate ‖u1−u2‖W 1,p(Ω), we observe that for each k = 1, 2, (uk, πk) ∈
W 1,p(Ω)×W 1,r(Ω) verifies:

−∆uk + curlak × uk +∇πk = f in Ω,

divuk = χ in Ω,

uk × n = g × n on Γ,

πk = π0 on Γ0 and πk = π0 + ci on Γi, i = 1, . . . , I,∫
Γi

uk · n dσ = 0, i = 1, . . . , I,

with the estimate:

‖uk‖W 1,p(Ω) ≤ C(1 + ‖curlak‖
L

3
2 (Ω)

)
(
‖f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/r,r(Γ)

+ (1 + ‖curlak‖
L

3
2 (Ω)

)(‖χ‖W 1,r(Ω) + ‖g‖W 1−1/p,p(Γ))
)
.

However, in order to estimate the difference u1 − u2, we have to reason differently.
We start with the problem verified by (u , π) = (u1 − u2, π1 − π2), which is the
following one:

−∆u + curla1 × u +∇π = −curla × u2 in Ω,

divu = 0 in Ω,

u × n = 0 on Γ,

π = 0 on Γ,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

where a = a1 − a2. Using the estimate made for the Oseen problem successively
for u and u2, we obtain that:

‖u‖W 1,p(Ω) ≤ C(1 + ‖curla1‖L3/2(Ω))(‖curla × u2‖Lr(Ω)).

Then

‖u‖W 1,p(Ω) ≤ C(1 + ‖curla1‖L3/2(Ω))‖curla‖L3/2(Ω)‖u2‖Lp∗(Ω) (76)

≤ C2(1 + ‖curla1‖L3/2(Ω))(1 + ‖curla2‖L3/2(Ω))‖curla‖L3/2(Ω)

×
(
‖f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/r,r(Γ) +
(
1 + ‖curla2‖L3/2(Ω)

)
×

(
‖χ‖W 1,r(Ω) + ‖g‖W 1−1/p,p(Γ)

))
.

We set α = ‖f ‖
[H r′,p′

0 (curl,Ω)]′
+ ‖π0‖W 1−1/r,r(Γ) and β = ‖χ‖W 1,r(Ω)

+ ‖g‖W 1−1/p,p(Γ). Then, (76) becomes:

‖u‖W 1,p(Ω) ≤ C1C
2‖a‖W 1,p(Ω)(1 + C1‖a1‖W 1,p(Ω))(1 + C1‖a2‖W 1,p(Ω))×

×
(
α+ β(1 + C1‖a2‖W 1,p(Ω))

)
, (77)

where C1 > 0 is such that

∀v ∈W 1,p(Ω), ‖curl v‖L3/2(Ω) ≤ C1‖v‖W 1,p(Ω). (78)

Thus, we can (for instance) obtain estimate (75) if we consider r such that

C1C
2(1 + C1λ)2

(
α+ β(1 + C1λ)

)
< 1,
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that is verified, for example, taking:

λ = C−1
1

((
2C1C

2(α+ β)
)−1/3 − 1

)
and α+ β < (2C1C

2)−1. (79)

Therefore, if (79) is verified, then the fixed point u∗ ∈W 1,p(Ω) satisfies the esti-
mate:

‖u∗‖W 1,p(Ω) ≤ C(α+ β)
(
1 + C1‖u∗‖W 1,p(Ω)

)2
. (80)

i.e

‖u∗‖W 1,p(Ω) ≤ x∗,

where x∗ is the smallest solution of the equation: x = ax2 +1 with a = CC1(α+β),

i.e x∗ =
2

1 +
√

1− 4a
, where we suppose that a < 1/4. Thus,

‖u∗‖W 1,p(Ω) ≤
4a

(1 +
√

1− 4a)2
≤ 4a, (81)

which proves the point i) and the estimate (74).
ii) Uniqueness: We shall next prove uniqueness. Let us denote by (u1, π1) the
solution obtained in step i) and by (u2, π2) any other solution for (NSN ) corre-
sponding to the same data. Setting u = u1 − u2 and π = π1 − π2. We find
that: 

−∆u + curlu1 × u +∇π = −curlu × u2 in Ω,

divu = 0 in Ω,

u × n = 0 on Γ,

π = 0 on Γ,∫
Γi

u · n dσ = 0, i = 1, . . . , I.

(82)

Then,

‖u‖W 1,p(Ω) ≤ C(1 + ‖curlu1‖L3/2(Ω))(‖curlu × u2‖Lr(Ω)), (83)

i.e as in step i):

‖u‖W 1,p(Ω) ≤ (1 + C1‖u1‖W 1,p(Ω))C1(‖u‖W 1,p(Ω)‖u2‖W 1,p(Ω). (84)

But, for i = 1, 2

‖u i‖W 1,p(Ω) ≤ C(1 + C1‖u i‖W 1,p(Ω))
2(α+ β), (85)

and then,

‖u i‖W 1,p(Ω) ≤ 4γCC1, (86)

where γ = ‖f ‖
[H r′,p′

0 (curl,Ω)]′
+ ‖χ‖W 1,r(Ω) + ‖π0‖W 1−1/r,r(Γ) + ‖g‖W 1−1/p,p(Γ), we

obtain

‖u‖W 1,p(Ω) ≤ CC2
1

(
1 + 4C2

1Cγ
)
4CC1γ‖u‖W 1,p(Ω). (87)

Then, if CC2
1

(
1 + 4C2

1Cγ
)
4CC1γ < 1, we deduce that u = 0 and the proof of

uniqueness is completed.
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