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Résumé

In this work, we introduce and analyze a discontinuous Galerkin method (DG) for the stationary
Magnetohydrodynamic system (MHD) with Navier-type boundary condition for both the velo-
city and the magnetic field. We prove a new discrete Sobolev inequality for the Lp-norm which
is the key ingredient in the study of the well-posedness and the convergence of the DG scheme.
The existence of the discrete solution is proved by using Brouwer’s theorem under assumption of
sufficiently small data. We provide a priori error estimates in terms of a natural energy norm for
the velocity and the magnetic fields. The novelty of this work is that, to the author’s knowledge,
this is the first time that a DG method, applied to the nonlinear coupled MHD system, with
Navier-type boundary conditions for both the velocity and the magnetic field, is proposed and
completely analyzed.
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1 Introduction

Magnetohydrodynamics (abbreviated as ”MHD”) is the field of physics that describes the behavior
of an electrically conductive fluid (such as liquid metals, plasmas, saltwater, etc.) under the influence
of magnetic fields [14,17]. This area of physics was discovered in 1942 by H. Alfvén in [1] (for which he
received the Nobel Prize in 1942), following the work of Hartmann on liquid metals in 1937. MHD plays
a predominant role in the field of astrophysics. For example, one can mention the phenomenon of solar
winds, which is the ejection of plasma from the sun [39]. Also, MHD has been highlighted in recent
years with experiments on nuclear fusion, particularly with tokamaks (see for example [41]). The MHD
is also found in various fields of industry and engineering, for example for cooling nuclear reactors with
liquid metal, pumping metals using electromagnetic pumps, simulating electrolysis during aluminum
production, MHD energy production (see [17,26,29]).

MHD is characterized by a system of coupled partial differential equations : fluid mechanics is
governed by the Navier-Stokes equations, while electromagnetism is described by Maxwell’s equations.

We consider the particular case of stationary incompressible MHD, meaning that the viscous
fluids are incompressible. We thus obtain the following system of partial differential equations (see,
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e.g., [14, 17,20]) :

−ν curl curlu+ (curlu)× u+∇p− κ(curl b)× b = f in Ω (1.1a)

κµ curl curl b− κ curl(u× b) = g in Ω (1.1b)

divu = 0 and div b = 0 in Ω. (1.1c)

Here Ω is a bounded simply connected domain in R3 with a connected boundary Γ. Additional
smoothness of the boundary will be precised whenever needed. The unknowns of these equations are
the velocity field u, the magnetic field b, and the pressure p, while f represents external forces and g is
a source term. The parameters ν, µ, and κ are respectively the fluid viscosity, magnetic permeability,
and coupling term. The term (curl b) × b represents the Lorentz force and the term curl(u × b)
represents the motion of the conducting material in the previously mentioned magnetic field.

Now, we complete the MHD system (1.1) with boundary conditions. For the magnetic field, we
consider the following boundary condition

b · n = 0 and curl b× n = 0 on Γ, (1.2)

where the vector n stands for the outward unit normal on Γ. For the velocity field, the boundary
conditions most frequently considered in the study of the MHD problem are Dirichlet conditions :
u = 0 on Γ which are the no-slip conditions, meaning that the fluid adheres to the wall. However, this
formulation, introduced by G. Stokes in 1845 [38], has limitations. Indeed, according to the work of
Serrin [37], these conditions may not be realistic, leading to phenomena of boundary layer. To model
different situations, several types of boundary conditions must be considered. In this paper, we will
consider the following boundary condition known as Navier-type boundary condition :

u · n = 0 and curlu× n = 0 on Γ, (1.3)

The scalar function p will be required to have zero mean over Ω. The data g should satisfy the
following compatibility condition

divg = 0 in Ω and g · n = 0 on Γ. (1.4)

There is significant literature devoted to the study of numerical schemes for solving the MHD equations
with Dirichlet boundary conditions for the velocity field. Several discretizations based on conforming
finite elements have been proposed for both the linear and nonlinear cases of the MHD system [6,
16, 20]. In the case of a non-convex polyhedral domain Ω, a conforming finite element method with
regularization is analyzed in [21]. This method allows for the enforcement of the constraint ∇ · b = 0
in the discrete formulation. Another way to address the difficulties related to the approximation of
the magnetic field has been proposed in [34, 35] by using Nédélec finite elements and introducing a
Lagrange multiplier. The MHD system has also been approached by the discontinuous Galerkin (DG)
method. The first result concerning the approximation of the linearized MHD system, with Dirichlet
boundary conditions for the velocity field, by the DG method is found in [25]. In the recent work [32],
a DG method is proposed and analyzed for the nonlinear MHD problem with two types of boundary
conditions for the magnetic field but still with Dirichlet type boundary conditions for the velocity
field. In this paper, we consider a new variational setting for the formulation of MHD problem where
the Navier-type boundary condition is imposed both for the velocity and for the magnetic field. To our
knowledge, there is no work in the literature done concerning the DG method for the MHD problem
(1.1) with boundary conditions (1.2)-(1.3).

DG method is a class of finite element methods that use completely discontinuous basis functions.
These basis and test functions are chosen from the same space without any continuity imposed at the
interfaces between elements (a tetrahedron or hexahedron in 3D, a triangle or quadrilateral in 2D).
This specificity allows this method great flexibility in meshing. Indeed, in the absence of sensitivity
to mesh regularity, the method is suitable for representing industrial geometries that are sometimes
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complex and require non-structured and non-conforming meshes. In addition, the approximation with
this method requires the use of a local weak formulation where the boundary conditions are taken into
account weakly, directly in the formulation of the problem without imposing them in the definition
of the approximation space. An integration by parts then reveals boundary terms where the physical
fluxes are approximated by numerical fluxes at the interfaces due to the discontinuities between the
meshes. This method has other important properties. It is locally conservative, easily parallelizable,
giving the method great interest. Introduced exactly 48 years ago by Reed and Hill (1973) [33] for the
resolution of neutron transport equations, the DG method has undergone a number of developments
in recent years and is still a widely used method today. Its field of application has subsequently been
extended to problems with diffusion, including [7, 11, 19] for Navier-Stokes equations and [13, 22, 28]
for electromagnetism.

The main difficulty in approximating Maxwell’s equations is incorporating the constraint div b = 0
into the DG scheme. This constraint can be imposed by the so-called regularization technique. This
method formally consists of replacing the operator curl(curl) with the vector Laplacian operator by
adding a term grad(div) to the equation κµ curl curl b − κ curl(u × b) = g in system (1.1b). This
term is zero because every solution b of problem (1.1b) has zero divergence. Thus, according to the
identity :

curl(curl)− grad(div) = −∆,

every magnetic field b that solves (1.1b) also satisfies the equation

−κµ∆b− κ curl(u× b) = g and div b = 0 in Ω.

This method then allows for a naturally regularized problem posed in the space

H0(div,Ω) ∩H(curl,Ω) = {v ∈ L2(Ω); div v ∈ L2(Ω), curlv ∈ L2(Ω), v · n = 0 on Γ}.

If the domain Ω is polyhedral and convex or has a regular boundary (c.f. [18, Theorem 3.7] and [5,
Theorem 3.4]), the space H0(div,Ω) ∩H(curl,Ω) coincides with the space

H1
T (Ω) = {v ∈H1(Ω); v · n = 0 on Γ}. (1.5)

The regularization technique for Maxwell’s equations was initially introduced by Werner [40] and
Leis [27]. Its applications are diverse, including the study of Maxwell’s equations in harmonic and low
frequency regimes [30], the study of Maxwell’s equations in a polyhedral domain [12], and the study of
a domain decomposition method for Maxwell’s equations [2]. However, when the domain has geometric
singularities, such as corners or re-entrant edges, the approach is not suitable, and the DG solution of
the regularized problem may converge but not to the solution of the original physical problem (see the
numerical results in [23]). The same situation was observed in the case of low-frequency approximation
by conforming finite elements (see [2, 12]). This is due to the lack of regularity of the solution which,

in this case, is not in H1(Ω) but only in H1/2(Ω) [18]. In this case, an alternative approach consists of
introducing a Lagrange multiplier r as an additional unknown of the problem [25,32]. This Lagrange
multiplier r can be seen as a pseudo-pressure associated with the constraint of zero divergence satisfied
by any solution of the problem. The size of the discrete system then becomes larger and, instead of
the second equation of system (1.1b), the couple (b, r) is a solution of :

κµ curl curl b+∇r − κ curl(u× d) = g and div b = 0 in Ω,

with a boundary condition r = 0 on Γ. Note here that by taking the divergence of the previous
equation, we obtain ∆r = div g in Ω and in the particular case where the source term g has zero
divergence, we have r = 0.

This method was applied in [25] for the approximation of the linearized MHD system. It has
recently been extended to the nonlinear case in [32]. However, it should be emphasized that the
boundary condition considered in these works for the velocity field is the classical Dirichlet-type
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condition. In our work, we propose a regularized or augmented DG formulation to impose the two
constraints divu = 0 and div b = 0.

The main difficulty is to prove the stability of the bilinear forms arising from the Navier-Stokes
convection terms Oh and the coupling term Ch on the discrete spaces. In order to pay particular
attention to the stability of the velocity/magnetic field coupling form Ch, let us clarify its definition
here :

Ch(bh,vh, bh) := κ
∑
T∈Th

∫
T

(vh × bh) · curl bh dx− κ
∑
e∈FI

h

∫
e

{{vh × bh}} · [[bh]]T ds. (1.6)

In a recent work [32], the authors propose an analysis of a DG scheme for the (MHD) system in R3

where the boundary conditions are of Dirichlet type for the velocity field and Navier type (1.2) for
the magnetic field. They consider the general case of a Lipschitz domain Ω. They show the continuity
of Ch by applying a L6-L3-L2 argument for the given term on the elements, then the discrete trace
inequality is used for the given term on the boundary. This approach is natural in the case of a non-
smooth domain. Indeed, without any regularity assumption on the domain, and given the boundary
conditions considered for the magnetic field b, the solution b of the system (2.1) is only in H1/2(Ω)
and hence in L3(Ω) by Sobolev embedding. However, the solution u belongs to H1(Ω) and hence to
L6(Ω), which allows us to apply the discrete inequality derived in [19,19] (see also [15]), which states
that the L6 norm is controlled by the following DG norm denoted by |||·|||h (see (2.19) with r = 6) :

‖vh‖L6(Ω) ≤ C|||vh|||h := C
( ∑
T∈Th

‖∇vh‖20,T +
∑
e∈Fh

γ

he
‖[[vh]]‖20,e

)1/2

. (1.7)

Since the DG norm for b is different (see the definition of |bh|C in (1.8)), a discrete functional analysis
is established in [32] to show that the L3 norm is controlled by this DG norm. More precisely, the
following discrete inequality is shown in [32] for the piecewise polynomial space :

‖bh‖L3(Ω) ≤ C|bh|C := C
( ∑
T∈Th

‖curl bh‖20,T +
∑
e∈FI

h

m0

he
‖[[bh]]T ‖

2
0,e

)1/2

, (1.8)

Note here that without any regularity assumption on the domain and with Navier-type boundary
conditions both for the velocity and magnetic fields, the solutions u and b of the system (2.1) are

both inH1/2(Ω) ↪→ L3(Ω). Therefore, the previous argument cannot be applied to show the continuity
of the form Ch. Additional regularity assumptions on the exact solution are therefore necessary. In
this work, we show a new discrete inequality analogous to (1.7) on discontinuous spaces provided that
the boundary of the domain is sufficiently regular. More precisely, for 1 ≤ p ≤ 6, we show that the Lp

norm is controlled by the following DG norm :

‖vh‖2Lp(Ω) ≤ C ‖vh‖
2
v,h := C

∑
T∈Th

(
‖div vh‖20,T+‖curlvh‖20,T

)
+
∑
e∈Fh

σ1

he
‖[[vh]]N‖

2
0,e

+
∑
e∈FI

h

σ2

he
‖[[vh]]T ‖

2
0,e
,

This inequality is natural because the DG norm ‖·‖v,h is the discrete equivalent of the H1
T (Ω) norm.

The proof techniques were inspired by the work of Girault and Rivière [19, Lemma 6.2] for the proof
of (1.7). However, the proof is not trivial and relies on a regularity result for the second-order elliptic
operator −∆ = curl(curl)− grad(div) with Navier-type boundary conditions in a bounded domain
Ω of R3 and of class C2,1.

This new discrete inequality allows, on the one hand, the application of an L4-L4-L2 argument to
show the continuity of the form Ch and the form Oh (see (2.5) for the definition of Oh and (1.6) for
the definition of Ch) on discrete spaces. On the other hand, it allows us to prove the existence of a
solution to the discrete problem using the Brouwer’s fixed-point theorem.
The rest of the paper is structured as follows. In Section 2, a discontinuous Galerkin formulation based
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on the classical interior penalty (IP) symmetric method of [19] is presented. The main difference is the
choice of the stabilization term. Instead of the L2 norm of the jump of the velocity across elements, we
consider stabilization terms based on the normal and tangential jumps of the approximate solutions.
The solvability and stability analysis of the discrete problem are established. One key ingredient is the
derivation of a new discrete Lp inequality on discontinuous spaces. Convergence results are derived
in Section 3 and show that the proposed DG finite element method leads to optimal error bounds for
velocity and magnetic field in energy norms.

2 Discontinuous Galerkin finite element approximation

In this section, we will propose a discontinuous Galerkin method for the numerical discretization
of the following incompressible MHD model problem : given an externel force f and a source term g,
we seek a velocity field u, a magnetic field b and a scalar pressure p such that

−ν curl curlu+ (curlu)× u+∇p− κ(curl b)× b = f in Ω, (2.1a)

κµ curl curl b− κ curl(u× b) = g in Ω, (2.1b)

divu = 0 and div b = 0 in Ω, (2.1c)

u · n = 0 and curlu× n = 0 on Γ, (2.1d)

b · n = 0 and curl b× n = 0 on Γ, (2.1e)

where Ω is a bounded simply connected domain in R3 with a connected boundary Γ. In the model, ν, µ,
and κ are respectively the fluid viscosity, magnetic permeability, and coupling term. We refer to [14,17]
for further discussion of typical values for these parameters. In addition, we assume f ∈ L2(Ω) and
g ∈ L2(Ω) satisfying the compatibility condition (1.4).

We will derive solvability and stability results only for the discretized problem. The counterpart
for the continuous problem was provided in [31, Theorem 2.3.1]. We note that the following analysis
to be developed can be easily extended to the case of nonhomogeneous boundary conditions.

We begin by introducing some notations. We denote by Th a regular triangulation of the domain
Ω into tetrahedra. The index h is indicative of the mesh size h which is defined as h = max

T∈Th
hT , where

hT is the diameter of T . The family is supposed to be regular in Ciarlet’s sense [9], i.e. there exists
ς > 0 independent of h such that the ratio

hT
ρT
≤ ς, ∀T ∈ Th, (2.2)

where ρT is the diameter of the inscribed circle in T . We shall use the assumption (2.2) throughout
this work. Let us denote by FIh the set of internal faces and by FΓ

h the set of external faces on Γ. We
set Fh = FIh ∪ FΓ

h . We denote by he the diameter of each face e. Let T+ and T− be two adjacent
elements of Th and let n+ (respectively n−) be the outward unit normal vector on ∂T+ (respectively
∂T−). For a vector field u, we denote by u± the trace of u from the interior of T±. We define jumps

[[v]]T := n+×v+ +n−×v−, [[v]]N := v+ ·n+ +v− ·n−, [[q]] := q+n+ +q−n−, [[v]] = v+−v−,

and averages

{{v}} :=
1

2
(v+ + v−), {{q}} :=

1

2
(q+ + q−),

and adopt the convention that for boundary faces e ∈ FΓ
h , we set [[v]]T = v×n, [[v]]N = v ·n, [[q]] = qn,

{{v}} = v and {{q}} = q.

Pk denotes the space of polynomials of total degree at most k on T with k = 1, 2 or 3. The
corresponding vector-valued function space is denoted by Pk.
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For 1 ≤ p ≤ ∞, we denote by Lp(Ω), the set of all functions u defined on Ω such that∫
Ω

|u(x)|p dx <∞,

equiped with the norm

‖u(x)‖Lp(Ω) =
(∫

Ω

|u(x)|p dx
)1/p

.

We denote by Wm,p(Ω) the Banach Sobolev space of order m defined by :

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ m},

where m is a non-negative integer and Dα denoting a distributional derivative of order |α|. The space
Wm,p(Ω) is equipped with the norm

‖u‖Wm,p(Ω) =
( ∑
|α|≤m

‖Dαu‖pLp(Ω)

)1/p

.

We denote by Hm(Ω), the hilbertian Sobolev space of order m ≥ 0 instead of W 2,m(Ω).

Throughout this paper, the boldface symbols denote vector-valued quantities. We will use C to
denote a generic positive constant independent of h.

2.1 Numerical scheme

We introduce the following finite element spaces which respectively approximate u, b and p :

Xh :=
{
vh ∈ L2(Ω); vh|T ∈ Pk(T ) , ∀T ∈ Th

}
Ch :=

{
ch ∈ L2(Ω); ch|T ∈ Pk(T ) , ∀T ∈ Th

}
Qh :=

{
qh ∈ L2

0(Ω); qh|T ∈ Pk−1(T ) , ∀T ∈ Th
}

We denote by W h the product space Xh ×Ch. The norm ‖·‖L2(Th) is defined by

‖·‖L2(Th) =
∑
T∈Th

‖·‖0,T , for any T ∈ Th,

with ‖·‖0,T = ‖·‖L2(T ). Similarly, we use the notation ‖·‖0,e = ‖·‖L2(e) for any e ∈ Fh.

The mixed DG scheme reads : Find ((uh, bh), ph) ∈W h ×Qh such that

Ah((uh, bh), (uh, bh), (vh, ch)) + Bh((vh, ch), ph) = Lh((vh, ch)), (2.3a)

Bh((uh, bh), qh) = 0, (2.3b)

for all (vh, ch) ∈W h and qh ∈ Qh, where the discrete forms Ah and Bh are defined by

Ah((wh,dh), (uh, bh), (vh, ch)) = Ah(uh,vh) +Mh(bh, ch) +Oh(wh,uh,vh)

+ Ch(dh,vh, bh)− Ch(dh,uh, ch), (2.4a)

Bh((uh, bh), qh) = Bh(uh, qh), (2.4b)

for (vh, ch) ∈W h, (wh,dh) ∈W h and qh ∈ Qh all with

Ah(uh,vh) := ν
∑
T∈Th

∫
T

curluh · curl vh dx+ ν
∑
T∈Th

∫
T

(div uh)(div vh) dx
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− ν
∑
e∈FI

h

(∫
e

{{curl uh}} · [[vh]]T ds+

∫
e

{{curlvh}} · [[uh]]T ds
)

− ν
∑
e∈Fh

(∫
e

{{div uh}}[[vh]]N ds+

∫
e

{{div vh}}[[uh]]N ds
)

+ ν
∑
e∈FI

h

σ1

he

∫
e

[[uh]]T · [[vh]]T ds+ ν
∑
e∈Fh

σ2

he

∫
e

[[uh]]N [[vh]]N ds

where σ1, σ2 > 0 are stabilization parameters that will be chosen large enough to ensure the coercivity
of the bilinear form Ah (see Lemma 2.2 below). For the curl-curl term in (2.1a), we apply an aug-
mentation technique where we replace the curl-curl operator by the vector Laplacian (c.f. [20, 30]) :
curl(curl)−grad(div) = −∆. The two last terms in the definition of Ah involving the tangential and
normal jumps of the discrete vector fields across the edges are necessary to ensure the coercivity of
the bilinear form Ah (see Lemma 2.2 below). We define the convective term with :

Oh(wh,uh, vh) :=
∑
T∈Th

∫
T

(curlwh × uh) · vh dx, (2.5)

for any wh, uh, vh ∈Xh. We also define the coupling form Ch as :

Ch(dh,vh, bh) := κ
∑
T∈Th

∫
T

(vh × dh) · curl bh dx− κ
∑
e∈FI

h

∫
e

{{vh × dh}} · [[bh]]T ds, (2.6)

for any vh ∈Xh and dh, bh ∈ Ch. The divergence constraint on the velocity is represented by Bh :

Bh(vh, ph) := −
∑
T∈Th

∫
T

(div vh)ph dx+
∑
e∈Fh

∫
e

{{ph}}[[vh]]N ds. (2.7)

The form Mh is defined by :

Mh(bh, ch) := κµ
∑
T∈Th

∫
T

curl bh · curl ch dx+ κµ
∑
T∈Th

∫
T

(div bh)(div ch) dx

− κµ
∑
e∈FI

h

(∫
e

{{curl bh}} · [[ch]]T ds+

∫
e

{{curl ch}} · [[bh]]T ds
)

− κµ
∑
e∈Fh

(∫
e

{{div bh}}[[ch]]N ds+ {{div ch}}[[bh]]N ds
)

+
∑
e∈FI

h

κµm1

he

∫
e

[[bh]]T · [[ch]]T ds+
∑
e∈Fh

κµm2

he

∫
e

[[bh]]N [[ch]]N ds

with m1,m2 > 0 are stabilization parameters that will be chosen large enough to ensure the coercivity
of the bilinear form Mh (see Lemma 2.2 below). Analogous to Ah, we have applied an augmentation
technique for the curl-curl term in the equation (2.1b). Finally, the form Lh is defined by

Lh(vh, ch) =

∫
Ω

f · vh dx+

∫
Ω

g · ch dx.

Remark 2.1 Another discontinuous Galerkin formulation is possible to solve the MHD problem (2.1).
Indeed, the curl-curl operator can be discretized using a standard interior penalty approach (see [22,
25, 32]) and then the form Mh is defined as

Mh(bh, ch) := κµ
∑
T∈Th

∫
T

curl bh · curl ch dx− κµ
∑
e∈FI

h

∫
e

{{curl bh}} · [[ch]]T ds
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− κµ
∑
e∈FI

h

∫
e

{{curl ch}} · [[bh]]T ds+
∑
e∈FI

h

κµm0

he

∫
e

[[bh]]T · [[ch]]T ds (2.8)

with m0 > 0 a stabilization parameter sufficiently large. The divergence-free constraint for the magnetic
field is imposed by introducing a Lagrange multiplier rh. This approach is motivated by the lack of the
regularity of b when Ω is not smooth. As mentionned above, if Ω is non-convex polyhedra, the magnetic
field b belongs to H1/2(Ω) only. Due to our assumption on Ω, the magnetic field as well as the velocity
field have the regularity H1(Ω).

To discuss the stability properties of the above forms, we need to introduce the following semi-
norms

‖uh‖2v,h := |uh|21,h +
∑
e∈Fh

σ1

he
‖[[uh]]N‖

2
0,e

+
∑
e∈FI

h

σ2

he
‖[[uh]]T ‖

2
0,e
, ∀uh ∈Xh.

‖bh‖2m,h := |bh|21,h +
∑
e∈Fh

m1

he
‖[[bh]]N‖

2
0,e

+
∑
e∈FI

h

m2

he
‖[[bh]]T ‖

2
0,e
, ∀bh ∈ Ch.

where
| · |21,h :=

∑
T∈Th

‖div · ‖20,T +
∑
T∈Th

‖curl · ‖20,T ,

and
‖qh‖2Qh

:= ‖qh‖2L2(Ω) , ∀qh ∈ Qh.

We note that the semi-norm ‖·‖v,h (respectively ‖·‖m,h) actually defines a norm on Xh (respectively
on Ch). (See [28, Remark 3.3]

Next, we recall the following discrete Poincaré-Friedrichs inequality for discontinuous finite element
spaces (see [42, Lemma 3.1]) :

∀vh ∈Xh, ‖vh‖L2(Ω) ≤ C ‖vh‖v,h , (2.9)

where the constant C > 0 is independent of h. Since Xh = Ch, this inequality is still valid for any
bh ∈ Ch and when the norm ‖·‖v,h is replaced by ‖·‖m,h.

2.2 A new Lp discrete Sobolev’s inequality on discountinuous spaces

In this subsection, we first establish a regularity result for the Laplace’s equation with Navier-type
boundary condition. This result plays a central role in the proof of a new discrete Sobolev embedding
allowing one to establish the well-posedness and the convergence of the DG scheme (2.3). In the
following result, we demonstrate that it is indeed possible to derive a regularity result similar to
those in [4, 5] for the Stokes problem when the divergence constraint is not imposed. This result is
presented here in a non Hilbertian setting which is more general than that needed to analyze our
model. However, since the result below is of independent interest to analyze other nonlinear problems,
we choose to give it in Lp spaces with p ≥ 6/5.

Proposition 2.1 Let Ω ⊂ R3 be an open bounded simply-connected set of class C2,1. Let us suppose
that g ∈ Lp(Ω) with p ≥ 6/5. Then, the following Laplace equation :{

−∆u = g in Ω

u · n = 0 and curlu× n = 0 on Γ
(2.10)

has a unique solution u ∈W 2,p(Ω) which also satisfies :

‖u‖W 2,p(Ω) 6 C ‖g‖Lp(Ω) . (2.11)
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Proof. We first consider the case p = 2 and prove the existence and uniqueness of solutions in H1(Ω).
The problem (2.10) is equivalent to the following variational formulation : Find u ∈ H 1

T (Ω) such
that :

∀v ∈ H 1
T (Ω),

∫
Ω

curlu · curlv dx+

∫
Ω

(divu) (divv) dx =

∫
Ω

g · v dx , (2.12)

where H1
T (Ω) is the space of functions in H1(Ω) with zero normal trace defined in (1.5). Let us

introduce the bilinear continuous form : a(·, ·) : H1
T (Ω)×H1

T (Ω)→ R defined as follows :

a(u, v) =

∫
Ω

curlu · curlv dx+

∫
Ω

(divu) (divv) dx.

Using the following Poincaré inequality [18, Theorem 3.9],

‖v‖H1(Ω) ≤ CP
(
‖curl v‖L2(Ω) + ‖div v‖L2(Ω)

)
, ∀v ∈H1

T (Ω), (2.13)

the form a(·, ·) is coercive on H1
T (Ω). Since the right hand-side defines a linear continuous form on

H 1
T (Ω), we deduce by the Lax-Milgram’s Lemma that problem (2.12) has a unique solution u ∈

H 1
T (Ω) satisfying the estimate :

‖u‖H 1(Ω) ≤ C‖ g ‖L2(Ω). (2.14)

Moreover, we set z = curlu. Then z satisfies the problem{
−∆ z = curl g and div z = 0 in Ω,

z × n = 0 on Γ,
(2.15)

Since The right hand side in (2.15) is a curl of function in L2(Ω) and g satisfies the compatibility
condition div(curl g) = 0 in Ω, it follows from [31, Lemma 1.3.4](see also [5, Theorem 5.7]) that
z ∈ H 1(Ω) and satisfies the estimate

‖curlu‖H1(Ω) = ‖z‖H 1(Ω) ≤ C‖g‖L2(Ω). (2.16)

As a consequence, ∇ divu = ∆u+curl curlu ∈ L2(Ω) and then divu belongs to H1(Ω). Applying [5,
Corollary 3.5] leads to deduce that u ∈ H 2(Ω). Using (2.16), we obtain

‖divu‖H1(Ω) ≤ C‖g‖L2(Ω). (2.17)

Finally, estimate (2.11) for p = 2 follows from (2.16) and (2.17). For the result in the non Hilbert
case, we consider two cases.

First case : p > 2. We know that problem (2.10) has a unique solution u ∈ H 2(Ω) ↪→ L∞(Ω).
Then u belongs to Lq(Ω) for all 1 ≤ q ≤ ∞. Moreover, since the right hand side in (2.15) is a curl of
function in Lp(Ω), it follows again from [31, Lemma 1.3.4] (see also [5, Theorem 5.7]) that problem
(2.15) has a unique solution z = curl u ∈ W 1,p(Ω). Similarly to the case p = 2, this implies that
∇ divu belongs to Lp(Ω) and by [3, Proposition 2.10], we deduce that divu ∈W 1,p(Ω). In summary,
we have

u ∈ Lp(Ω), divu ∈ Lp(Ω), curlu ∈ Lp(Ω) and u · n = 0 on Γ. (2.18)

Applying again [5, Corollary 3.5], we deduce that u ∈W 2,p(Ω) and satisfies the estimate (2.11).

Second case : 6/5 ≤ p < 2. Observe that g is at least L6/5(Ω). Since H1(Ω) ↪→ L6(Ω), the right-
hand side in (2.12) still defines a linear continuous form on H1(Ω). By the Lax-Milgram lemma, the
problem (2.10) has a unique solution u ∈ H 1(Ω) satisfying the estimate :

‖u‖H 1(Ω) ≤ C‖ g ‖L6/5(Ω).

Next, we use the same argument as in the first step in order to prove that curlu belongs to W 1,p(Ω)
and then∇divu ∈W 1,p(Ω). Now, since u ∈ L6(Ω) ↪→ Lp(Ω), the solution u satisfies (2.18). Applying
again [5, Corollary 3.5], we deduce that u belongs to W 2,p(Ω) and satisfies the estimate (2.11). �
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To prove that the discrete problem is well posed, we shall require a discrete Lp estimate for
functions in Xh with p ≤ 6, in terms of the norm ‖ · ‖v,h. The inequality (2.20) given in the next
Lemma is the equivalent of the following Lr Sobolev’s inequality with r ∈ [2, ∞) proven in [19, Lemma
6.2] in two dimensions : for any vh ∈Xh,

‖vh‖Lr(Ω) ≤ C(r)|||vh|||h := C(r)
( ∑
T∈Th

‖∇vh‖20,T +
∑
e∈Fh

γ

he
‖[[vh]]‖20,e

)1/2

, (2.19)

where γ > 0 is a stabilization parameter.
Sobolev’s inequality (2.20) will be needed in the proof of Theorem 2.6 below. More specifically, it
is required to bound the forms Oh in terms of the norm ‖ · ‖v,h when deriving the continuity of
the operator Fh. This inequality will also be required to handle the coupling form Ch. The proof is
similar to (2.19) but not elementary because it heavily relies on the new regularity theorem stated in
Proposition 2.1. So, for the rest of this paper, we shall make an additional smoothness assumptions
on Ω. Indeed, we suppose that the domain Ω has a boundary of class C2,1.

Lemma 2.1 For each real number p ∈ (1, 6], there exists a constant C > 0 independent of h such
that :

∀vh ∈Xh, ‖vh‖Lp(Ω) 6 C ‖vh‖v,h (2.20)

Proof. Following [19], we introduce the lifting v(h) of vh ∈ Xh where v(h) ∈ H1
T (Ω) is the unique

solution of∫
Ω

curlv(h)·curlw dx+

∫
Ω

div v(h) divw dx =
∑
T∈Th

(∫
T

curlvh·curlw dx+

∫
T

(div vh)(divw) dx
)
,

for any w ∈H1
T (Ω). Moreover, we have the following estimate

‖div v(h)‖L2(Ω) + ‖curlv(h)‖L2(Ω) ≤
( ∑
T∈Th

‖div vh‖20,T +
∑
T∈Th

‖curlvh‖20,T
)1/2

≤ ‖vh‖v,h .

Since v(h) belongs to H1
T (Ω), we have from (2.13) for any 1 ≤ p ≤ 6

‖v(h)‖Lp(Ω) ≤ C ‖vh‖v,h . (2.21)

So, it suffices to prove that (2.20) holds for vh − v(h) and then to use triangle inequality. By duality,
we have

‖vh − v(h)‖Lp(Ω) = sup
g∈Lp′ (Ω)

∫
Ω

(vh − v(h)) · g dx

‖g‖Lp′ (Ω)

,

where 1
p′ = 1− 1

p . Since p 6 6, then p′ > 6
5 and g always belongs to L6/5(Ω). Thanks to Proposition

2.1, the following problem{
−∆φ = g in Ω

curlφ× n = 0 and φ · n = 0 on Γ

has a unique solution φ ∈W 2, 65 (Ω) satisfying the estimate

‖φ‖
W 2, 6

5 (Ω)
6 C ‖g‖

L
6
5 (Ω)

≤ C ‖g‖Lp′ (Ω) (2.22)

Then, since [[v(h)]]N = 0 for all e ∈ Fh, [[v(h)]]T = 0 for all e ∈ FIh and (curlφ) × n = 0 on Γ, the
regularity of φ and (2.21) imply that∫

Ω

(vh − v(h)) · g dx = −
∫

Ω

∆φ · (v − v(h)) dx
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= −
∑
e∈Fh

∫
e

divφ [[vh]]N ds+
∑
e∈FI

h

∫
e

curlφ · [[vh]]T ds. (2.23)

We need to bound the right-hand side of (2.23). We give the proof for the first term involving the
divergence oprator and the normal jumps. A similar bound for the second term, involving the ro-
tational operator and the tangential jumps, can be obtained exactly with the same arguments and
obvious modifications. Since divφ belongs to W 1,6/5(Ω), the trace of divφ on each face e belongs to

W 1/6,6/5(e) ↪→ L4/3(e). Then, we have∣∣∣ ∫
e

divφ [[vh]]N ds
∣∣∣ 6 ‖divφ‖L4/3(e) ‖[[vh]]N‖L4(e)

. (2.24)

Passing to the reference element T̂ with the face ê, we have

‖divφ‖L4/3(e) ≤ C|e|
3
4

∥∥∥d̂ivφ
∥∥∥
L4/3(ê)

.

Next, using the following trace inequality :

‖v‖Lp(e) ≤ ch
− 1

p +d( 1
p−

1
q )

T ‖v‖Lq(T ) , (2.25)

with p = 4
3 , q = 2 and d = 3 together with the embedding W 1,6/5(T̂ ) ↪→ L2(T̂ ), we obtain

‖divφ‖L4/3(e) ≤ C|e|
3
4

∥∥∥d̂ivφ
∥∥∥
L2(T̂ )

≤ C|e| 34
∥∥∥d̂ivφ

∥∥∥
W 1,6/5(T̂ )

.

Applying the inequality

‖v̂‖W 1,p(T̂ ) ≤ C
hT

|T |
1
p

‖v‖W 1,p(T ) ,

we deduce that

‖divφ‖L4/3(e) ≤ C|e|
3
4
hT

|T | 56
‖divφ‖W 1,6/5(T ) .

Moreover, by virtue of assumption (2.2), we have for any T ∈ Th

|e|√
T
≤ ChT

ρT
≤ Cς,

which gives
‖divφ‖L4/3(e) ≤ C ‖divφ‖W 1,6/5(T ) . (2.26)

On the other hand, we have

‖[[vh]]N‖L4(e)
≤ C|e|1/4 ‖[[v̂h]]N‖L2(ê)

≤ C|e|−1/2 ‖[[vh]]N‖L2(e)
, (2.27)

where a local equivalence of norms is used. Combining (2.26) and (2.27) in (2.24), we obtain∣∣∣ ∫
e

divφ [[vh]]N ds
∣∣∣ 6 C ‖divφ‖W 1,6/5(T ) |e|

−1/2 ‖[[vh]]N‖L2(e) . (2.28)

Finally, summing over e ∈ Fh and using estimate (2.22), we obtain

∑
e∈Fh

∫
e

divφ [[vh]]N ds 6 C ‖g‖Lp′ (Ω)

( ∑
e∈Fh

σ1

|e|
‖[[vh]]N‖

2
L2(e)

)1/2

. (2.29)
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A very much similar proof gives∑
e∈FI

h

∫
e

curlφ · [[vh]]T ds 6 C ‖g‖Lp′ (Ω)

( ∑
e∈FI

h

σ2

|e|
‖[[vh]]T ‖

2
L2(e)

)1/2

. (2.30)

Collecting the above estimates (2.29)-(2.30) into (2.23), we obtain∫
Ω

(vh − v(h)) · g dx 6 C ‖g‖Lp′ (Ω) ‖vh‖v,h

which achieves the proof of the estimate (2.20). �

Remark 2.2 We recall the following Sobolev embedding H1(Ω) ↪→ Lp(Ω) for all real numbers 1 ≤
p ≤ 6. So, we have from (2.13)

∀v ∈H1
T (Ω), ‖v‖Lp(Ω) ≤ C

(
‖curlv‖L2(Ω) + ‖divv‖L2(Ω)

)
. (2.31)

Observe that the discrete Sobolev embedding (2.20) is the counterpart of that valid at the continuous
level (2.31). Indeed, if v ∈ H 1

T (Ω), we have [[v(h)]]N = 0 for all e ∈ Fh and [[v(h)]]T = 0 for all
e ∈ FIh and then, we have (2.31).

2.3 Continuity and Ellipticity properties

In this section, we state and discuss the main properties of the forms involved in our discrete
scheme (2.3). We have a first lemma which ensures the coercivity for the forms Ah and Mh. Even
though the proof is the same of Lemma 10.2.1 of [36] for the case of the two-dimensional Stokes
problem, we would rather present full details for the sake of completeness

Lemma 2.2 For σ1 and σ2 large enough, there exists a positive constant C independent of h such
that :

Ah(uh,uh) > Cν ‖uh‖2v,h , ∀uh ∈Xh. (2.32)

For m1 and m2 large enough, there exists a positive constant C independent of h such that :

Mh(bh, bh) > Cκµ ‖bh‖2m,h , ∀bh ∈ Ch. (2.33)

Besides, we have Oh(wh,uh,uh) = 0 for any wh, uh, vh ∈Xh.

Proof. Trivially, since the vector curlwh × vh is orthogonal to vh, its scalar product with vh is zero.
So, it follows from the definition of Oh :

Oh(wh,uh,uh) =
∑
T∈Th

∫
T

(curlwh × uh) · uh dx = 0.

Now, we prove the ellipticity property for Ah. Let uh ∈Xh, we have :

Ah(uh,uh) = ν|uh|21,h − 2ν
∑
e∈FI

h

∫
e

{{curluh}} · [[uh]]T ds− 2ν
∑
e∈Fh

∫
e

{{divuh}}[[uh]]N ds

+ ν
∑
e∈FI

h

σ1

he
‖[[uh]]T ‖

2
0,e + ν

∑
e∈Fh

σ2

he
‖[[uh]]N‖

2
0,e

(2.34)

Applying the Cauchy-Schwarz inequality, we have :

2ν
∑
e∈FI

h

∫
e

{{curluh}} · [[uh]]T ds 6 2ν
( ∑
e∈FI

h

he ‖{{curluh}}‖20,e
) 1

2
( ∑
e∈FI

h

h−1
e ‖[[uh]]T ‖

2
0,e

) 1
2
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Now let e ∈ FIh such that e = ∂T1 ∩ ∂T2 with T1, T2 ∈ Th. Obviously,

√
he‖ {{curluh}}‖0,e ≤

√
he
2

2∑
i=1

‖(curl uh)/Ti
‖0,e.

Thanks to the equivalence of norms in finite dimensional spaces and to a classical scaling argument,
we obtain √

he‖ {{curluh}}‖0,e ≤ c1
2

(
‖ curluh‖0,T1 + ‖ curluh‖0,T2

)
,

where c1 is a constant independent of the discretization. A completely similar argument holds on a
boundary face e ∈ FΓ

h . So by summing upon all faces it follows that

2ν
∑
e∈FI

h

∫
e

{{curluh}} · [[uh]]T ds ≤ 2c1ν
( ∑
T∈Th

‖ curl uh‖20,T
)1/2( ∑

e∈FI
h

h−1
e ‖[[uh]]T ‖

2
0,e

) 1
2

≤ 2c1ν|uh|1,h
( ∑
e∈FI

h

h−1
e ‖[[uh]]T ‖

2
0,e

) 1
2

.

Similarly, we can check that

2ν
∑
e∈Fh

∫
e

{{divuh}}[[uh]]N ds ≤ 2c2ν|uh|1,h
( ∑
e∈Fh

h−1
e ‖[[uh]]N‖

2
0,e

) 1
2

.

As a consequence, we have

Ah(uh,uh) ≥ ν|uh|21,h + ν
∑
e∈FI

h

σ1

he
‖[[uh]]T ‖

2
0,e

+ ν
∑
e∈Fh

σ2

he
‖[[uh]]N‖

2
0,e

− 2c1ν√
σ1
|uh|1,h

( ∑
e∈FI

h

σ1

he
‖[[uh]]T ‖

2
0,e

) 1
2 − 2c2ν√

σ2
|uh|1,h

( ∑
e∈Fh

σ2

he
‖[[uh]]N‖

2
0,e

) 1
2

.

Applying Young’s inequality, we obtain

Ah(uh,uh) ≥ ν|uh|21,h + ν
∑
e∈FI

h

σ1

he
‖[[uh]]T ‖

2
0,e

+ ν
∑
e∈Fh

σ2

he
‖[[uh]]N‖

2
0,e

− c ν

σ

(
|uh|21,h +

∑
e∈FI

h

σ1

he
‖[[uh]]T ‖

2
0,e

+
∑
e∈Fh

σ2

he
‖[[uh]]N‖

2
0,e

)
,

where c = c1 +c2 and σ = min(
√
σ1,
√
σ2). So Ah(·, ·) is coercive for σ > c and the coercivity constant

C in (2.32) can be obtained from below independently of σ1 and σ2, for σ1 and σ2 sufficiently large.
With the same manner, we prove the ellipticity property of Mh by using the definition of ‖bh‖m,h and
by supposing that the parameters m1 and m2 are sufficiently large. �

Remark 2.3 Compared with the approach in [22, 25, 32], a semi-coercivity property for Mh, defined
in (2.8), is established with respect to the semi-norm

|bh|2C :=
∑
T∈Th

‖curl bh‖20,T +
∑
e∈FI

h

m0

he
‖[[bh]]T ‖

2
0,e
, (2.35)

for a parameter m0 sufficiently large.

Now, we give the following continuity results with respect of the norms ‖·‖v,h and ‖·‖m,h. The proof
is similar to that in [28, Proposition 3.6] for the form Ah and to that in [10, 24] for the form Bh, but
we write it here for the reader’s convenience.
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Lemma 2.3 Let uh,vh ∈Xh, bh, ch ∈ Ch and ph ∈ Qh. Then, we have :

|Ah(uh,vh)| 6 Cν ‖uh‖v,h ‖vh‖v,h ,
|Bh(vh, ph)| 6 C ‖vh‖v,h ‖ph‖0,Ω ,
|Mh(bh, ch)| 6 Cκµ ‖bh‖m,h ‖ch‖m,h ,

with constants C > 0 that are independent of h, ν, µ and κ.

Proof. Let us write : Ah(uh,vh) := I1 + I2 + I3 + I4, with

I1 := ν
∑
T∈Th

∫
T

curluh · curl vh dx+ ν
∑
T∈Th

∫
T

divuh div vh dx

I2 := −ν
∑
e∈FI

h

(∫
e

{{curl uh}} · [[vh]]T ds+

∫
e

{{curlvh}} · [[uh]]T ds
)

I3 := −ν
∑
e∈Fh

(∫
e

{{div uh}}[[vh]]N ds+

∫
e

{{div vh}}[[uh]]N ds
)

I4 := ν
∑
e∈FI

h

σ1

he

∫
e

[[uh]]T · [[vh]]T ds+ ν
∑
e∈Fh

σ2

he

∫
e

[[uh]]N [[vh]]N ds.

Applying the Cauchy-Schwarz inequality, we obtain

|I1| 6 ν
( ∑
T∈Th

‖curluh‖20,T
) 1

2
( ∑
T∈Th

‖curlvh‖20,T
) 1

2

+ ν
( ∑
T∈Th

‖divuh‖20,T
) 1

2
( ∑
T∈Th

‖div vh‖20,T
) 1

2

≤ ν
( ∑
T∈Th

‖curluh‖20,T +
∑
T∈Th

‖divuh‖20,T
)1/2( ∑

T∈Th

‖curlvh‖20,T +
∑
T∈Th

‖div vh‖20,T
)1/2

≤ ν ‖uh‖v,h ‖vh‖v,h .

Similarly, we have

|I4| 6 ν
( ∑
e∈FI

h

σ1

he
‖[[uh]]T ‖

2
0,e

) 1
2
( ∑
e∈FI

h

σ1

he
‖[[vh]]T ‖

2
) 1

2

+
( ∑
e∈Fh

σ2

he
‖[[uh]]N‖

2
0,e

) 1
2
( ∑
e∈Fh

σ2

he
‖[[vh]]N‖

2
) 1

2

≤ ν ‖uh‖v,h ‖vh‖v,h .

Now, applying Cauchy-Schwarz inequality and the inverse inequality, we obtain :

|I2| 6 νC
( ∑
T∈Th

‖curluh‖20,T
) 1

2
( ∑
e∈FI

h

h−1
e ‖[[vh]]T ‖

2
0,e

) 1
2

+ νC
( ∑
T∈Th

‖curlvh‖20,T
) 1

2
( ∑
e∈FI

h

h−1
e ‖[[uh]]T ‖

2
0,e

) 1
2

≤ Cν ‖uh‖v,h ‖vh‖v,h .

In a similar way, for T3, we can verify that |I3| ≤ Cν ‖uh‖v,h ‖vh‖v,h. Adding these previous estimates,
we deduce the continuity for Ah. To prove the continuity of the form Mh it suffices to use the same
techniques as in the proof for Ah. Next, the form Bh is similar to the form used in [10, 24] for the
Stokes system and we can prove similarly

|Bh(vh, ph)| 6
( ∑
T∈Th

‖div vh‖20,T
) 1

2
( ∑
T∈Th

‖ph‖20,T
) 1

2

+
( ∑
e∈Fh

he
σ2
‖{{ph}}‖20,e

) 1
2
( ∑
e∈Fh

σ2

he
‖[[vh]]N‖

2
0,e

) 1
2

6
( ∑
T∈Th

‖div vh‖20,T
) 1

2
( ∑
T∈Th

‖ph‖20,T
) 1

2

+ Cσ
− 1

2
2

( ∑
T∈Th

‖ph‖20,T
) 1

2
( ∑
e∈Fh

σ2

he
‖[[vh]]N‖

2
0,e

) 1
2

6 C ‖vh‖v,h ‖ph‖0,Ω .
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Our next goal is to establish the continuity properties for the non linear forms Oh and Ch. In view
of (2.20), we have the following result concerning the continuity of the form Oh.

Lemma 2.4 There exists a constant C > 0 independent of h such that for any wh, uh, vh ∈Xh,

Oh(wh,uh,vh) 6 C ‖wh‖v,h ‖uh‖v,h ‖vh‖v,h . (2.36)

Proof. Using Hölder’s inequality, we obtain

Oh(wh,uh, vh) :=
∑
T∈Th

∫
T

(curlwh × uh) · vh dx ≤ C
( ∑
T∈Th

‖ curlwh‖20,T
)1/2

‖uh‖L4(Ω)‖vh‖L4(Ω)

Applying (2.20) with p = 4, the result is then achieved. �

For the continuity of the coupling form Ch, we require the discrete Sobolev inequality (2.20) with
p = 4 for both the velocity and the magnetic field. Indeed, we consider an L4-L4-L2 argument when
applying the Hölder inequality. We note that, in the proof given in [32, Lemma 4.3], an argument
L3-L6-L2 is used to handle the form Ch. This approach is realistic because they consider the general
case of a bounded Lipschitz domain Ω ∈ R3 and a Dirichlet boundary condition for the veloicty. So,
in this case, the discrete inequality given in (2.19) is used for the velocity u with r = 6. However, this
inequality can not be applied for the magnetic field b. With boundary conditions of type (2.1e) or

b× n = 0 on Γ, b has a regularity only in H1/2(Ω) ↪→ L3(Ω). Hence, they establish in [32, Theorem
8.1] the following discrete L3 estimate for functions in Ch.

Theorem 2.4 [W. Qiu and Ke. Shi, 2020 ] There is a positive constant C such that for any bh ∈ Ch

we have

‖bh‖L3(Ω) 6 C
( ∑
e∈FI

h

‖h− 1
2 [[bh]]T ‖

2
0,e +

∑
T∈Th

‖curl bh‖20,T + ‖ divNh bh‖L2(Ω)

)
, (2.37)

where the discrete divergence divNh bh is defined to be the unique function in H1(Ω) ∩ L2
0(Ω) ∩ Sh

satisfying

(divNh bh, s)Th = −(bh,∇s)Th , for all s ∈ H1(Ω) ∩ L2
0(Ω) ∩ Sh,

where Sh :=
{
sh ∈ L2(Ω); sh|T ∈ Pk+1(T ) , ∀T ∈ Th

}
.

We can now derive the continuity of the form Ch as in [32, Lemma 4.3]. The main tool different
from their proof is that we use an L4-L4-L2 argument instead of an L3-L6-L2 argument when applying
the Hölder inequality. So, for our case, we apply the discrete Sobolev inequality (2.20) with p = 4
instead of (2.19) and (2.37). The proof is given for the sake of completeness.

Lemma 2.5 There exists a constant C > 0 such that for any (bh,vh, ch) ∈ Ch ×Xh ×Ch,

Ch(bh,vh, ch) 6 Cκ ‖bh‖m,h ‖vh‖v,h ‖ch‖m,h . (2.38)

Proof. By the definition of the form Ch, we have

Ch(bh,vh, ch) = κ
∑
T∈Th

∫
T

(vh × bh) · curl ch dx− κ
∑
e∈FI

h

∫
e

{{vh × bh}} · [[ch]]T ds (2.39)

Applying the Hölder inequality, we obtain

Ch(bh,vh, ch) ≤ Cκ‖bh‖L4(Ω)‖vh‖L4(Ω)

( ∑
T∈Th

‖ curl ch‖20,T
)1/2
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+ Cκ
( ∑
e∈FI

h

h‖bh‖4L4(e)

)1/4( ∑
e∈FI

h

h‖vh‖4L4(e)

)1/4( ∑
e∈FI

h

h−1‖[[ch]]T ‖
2
L2(e)

)1/2

.

Thanks to the trace inequality, we have

Ch(bh,vh, ch) ≤ Cκ‖bh‖L4(Ω)‖vh‖L4(Ω)

( ∑
T∈Th

‖ curl ch‖20,T
)1/2

+ Cκ‖bh‖L4(Ω)‖vh‖L4(Ω)

( ∑
e∈FI

h

σ1

h
‖[[ch]]T ‖

2
L2(e)

)1/2

≤ Cκ‖bh‖L4(Ω)‖vh‖L4(Ω) ‖ch‖m,h .

Then, the bound (2.38) is a direct application of the Sobolev’s inequalities (2.37) and (2.20) with
p = 4. �

Remark 2.5 It is not possible to reuse the same strategy in [32] with a regularity below H1(Ω) for
both the velocity and the magnetic field. Indeed, in our work, the velocity and the magnetic field verify
the same type of boundary conditions. So, if we consider the case of non smooth domain, we have
u ∈ H1/2(Ω) ↪→ L3(Ω) and b ∈ H1/2(Ω) ↪→ L3(Ω). Then, the argument L3-L3-L2(Th) does not

allow to bound
∑
T∈Th

∫
T

(v × b) · curl b dx and then the form Ch can not be bounded.

The well-posedness of the discrete problem (2.3) requires an inf-sup condition which is an extension
of the usual inf-sup condition for the Stokes problem to our Navier-type boundary conditions. It is
proven in [36, Lemma 10.2.2] that the form Bh satisfies a uniform discrete inf-sup condition. More
precisely, we have

Lemma 2.6 There exists CB > 0 only depending on Ω such that :

inf
qh∈Qh

sup
vh∈Xh

Bh(vh, qh)

‖vh‖v,h ‖qh‖Qh

> CB , (2.40)

2.4 Well-posedness of the discrete problem

We aim in this subsection to show the solvability of (2.3) by analysing an equivalent fixed-point
problem. To this end, we first eliminate the pressure by introducing the space Kh defined by :

Kh = {(uh, bh) ∈W h; Bh((uh, bh), qh) = Bh(uh, qh) = 0, ∀qh ∈ Qh}.

So, we consider the following problem : Find (uh, bh) ∈Kh such that

Ah((uh, bh), (uh, bh), (vh, ch)) = Lh((vh, ch)), (2.41)

for all (vh, ch) ∈Kh. Newt, for given (wh,dh) ∈Kh, we define the operator Fh by :

Fh : Kh →Kh

(wh,dh) 7→ Fh(wh,dh) = (uh, bh),

where (uh, bh) is the solution of the linearized problem : Find (uh, bh) ∈Kh such that

Ah((wh,dh), (uh, bh), (vh, ch)) = Lh((vh, ch)), (2.42)
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for all (vh, ch) ∈ Kh. Then, the discrete DG scheme (2.41) can be rewritten equivalently as the
following fixed-point problem :

Find (uh, bh) ∈Kh such that Fh(wh,dh) = (uh, bh). (2.43)

In what follows, we focus on analysing the existence and uniqueness of such a fixed point (uh, bh). For
this purpose, we will verify that the operator Fh satisfies the hypothesis of the Brouwer’s fixed-point
theorem (c.f. [8, Theorem 9.9-2]) which is stated as follows : let W be a nonempty compact convex
subset of a finite-dimensional normed space, and let S : W →W be a contraction from W into itself.
Then S has a unique fixed point in W . The existence and uniqueness of ph follow from the discrete
inf-sup condition for the incompressibility form Bh.

We begin by checking that the operator F is well defined. So, in the following result, we show
that the linearized problem (2.42) has a unique solution.

Lemma 2.7 Assuming the stabilization parameters σ1, σ2, m1 and m2 sufficiently large, there exists
a unique solution (uh, bh) ∈ Kh for the linearized problem (2.42). Moreover, we have the following
estimate :

ν ‖uh‖2v,h + κµ ‖bh‖2m,h 6 C(ν−1 ‖f‖20,Ω + κ−1µ−1 ‖g‖20,Ω). (2.44)

Proof. Since (2.42) consists of a linear system, it suffices to establish the uniqueness. Assume that the
data are zero f = g = 0 and we prove that (uh, bh) = (0,0). Choosing (vh, ch) = (uh, bh) as test
functions leads to

ν ‖uh‖2v,h + κµ ‖bh‖2m,h = 0,

implying that uh = bh = 0. The estimate in (2.44) follows as a consequence of the coercivity of Ah
and Mh stated in Lemma 2.2. Indeed, we have :

Ah((uh, bh), (uh, bh), (uh, bh)) = Ah(uh,uh) +Mh(bh, bh) =

∫
Ω

f · uh dx+

∫
Ω

g · bh dx. (2.45)

Thanks to (2.32), (2.33) and applying Cauchy-Schwarz inequality, we derive :

ν ‖uh‖2v,h + κµ|bh|2m,h 6 C
(
‖f‖L2(Ω) ‖uh‖L2(Ω) + ‖g‖L2(Ω) ‖bh‖L2(Ω)

)
.

The Sobolev inequality (2.20) with p = 2 and Young’s inequality imply the desired estimate. �

In the following result, we provide the assumptions under which problem (2.3) is well defined.

Theorem 2.6 Assume that

ν−2 ‖f‖0,Ω , µ
−1ν−1 ‖f‖0,Ω , κ

− 1
2µ−

1
2 ν−

3
2 ‖g‖0,Ω , ν

− 1
2µ−

3
2κ−

1
2 ‖g‖0,Ω (2.46)

are small enough. Then, the DG scheme (2.3) has a unique solution (uh, bh, ph) ∈ Xh × Ch × Qh
which satisfies :

ν ‖uh‖2v,h + κµ ‖bh‖2m,h 6 C(ν−1 ‖f‖20,Ω + κ−1µ−1 ‖g‖20,Ω) (2.47)

Proof. We begin by proving the existence and uniqueness of (uh, bh) solution of (2.41). This is equiva-
lent to showing that the operator Fh defined in (2.43) has a unique fixed-point. Two steps are needed
to that.

Step 1 : We prove that Fh maps a closed ball into itself. Using the same arguments as above, we can
show that if (uh, bh) is a solution of (2.41), then the following a priori estimate holds

ν ‖uh‖2v,h + κµ ‖bh‖2m,h 6 C
(
ν−1 ‖f‖2L2(Ω) + κ−1µ−1 ‖g‖2L2(Ω)

)
:= M (2.48)
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So, we define GM as :

GM :=
{

(uh, bh) ∈Kh, ν ‖uh‖2v,h + κµ ‖bh‖2m,h 6M
}
. (2.49)

It is easy to see that GM is a closed set of Kh and F (GM ) ⊂ GM .

Step 2 : We prove that when the data f and g are small enough, Fh is a contraction from GM into
itself. We remark in advance that a combination of the Cauchy-Schwarz and Hölder inequalities with
the discrete Sobolev’s inequality (2.20) plays a key role in the proof.

Let (w1
h,d

1
h), (w2

h,d
2
h) ∈ GM and (u1

h, b
1
h) := F(w1

h,d
1
h), (u2

h, b
2
h) := F(w2

h,d
2
h) be the solutions of

the linearized problems (2.42). From this fact, the differences uh := u1
h−u2

h and bh := b1
h−b

2
h satisfy :

for any (vh, ch) ∈W h

Ah(uh,vh) +Mh(bh, ch) +Oh(w1
h,u

1
h,vh)−Oh(w2

h,u
2
h,vh)

+ Ch(d1
h,vh, b

1
h)− Ch(d2

h,vh, b
2
h)− Ch(d1

h,u
1
h, ch) + Ch(d2

h,u
2
h, ch) = 0.

Taking (uh, bh) as test function in the above relation, adding and substracting Ch(d1
h,uh, b

2
h), we

obtain :

Ah(uh,uh) +Mh(bh, bh) = Oh(w2 −w1,u
2
h,uh)− Ch(d1 − d2,uh, b

2
h) + Ch(d1 − d2,u

2
h, bh), (2.50)

where we have used the fact that

Oh(w2
h,u

2
h,uh)−Oh(w1

h,u
1
h,uh) = Oh(w2

h −w1
h,u

2
h,uh).

Let us estimate each term in the right-hand side of (2.50). The first term can be easily estimated by
using Lemma 2.4 and Young’s inequality. Indeed, it follows that

Oh(w2
h −w1

h,u
2
h,uh) 6 C

∥∥w1
h −w2

h

∥∥
v,h

∥∥u2
h

∥∥
v,h
‖uh‖v,h

≤ Cν−1
∥∥w1

h −w2
h

∥∥2

v,h

∥∥u2
h

∥∥2

v,h
+

1

4
ν ‖uh‖2v,h .

Next, by using Corollary 2.5, we have

Ch(d1
h − d

2
h,uh, b

2
h) 6 Cκ

∥∥d1
h − d

2
h

∥∥
m,h
‖uh‖v,h

∥∥b2
h

∥∥
m,h

≤ Cκ2ν−1
∥∥d1

h − d
2
h

∥∥2

m,h

∥∥b2
h

∥∥2

m,h
+

1

4
ν ‖uh‖2v,h ,

Ch(d1
h − d

2
h,u

2
h, bh) 6 Cκ

∥∥d1
h − d

2
h

∥∥
m,h

∥∥u2
h

∥∥
v,h
‖bh‖m,h

≤ Cκµ−1
∥∥d1

h − d
2
h

∥∥2

m,h

∥∥u2
h

∥∥2

v,h
+

1

2
κµ ‖bh‖2m,h .

Collecting the above estimates in (2.50), using the coercivity of Ah and Mh, we obtain

ν ‖uh‖2v,h + κµ ‖bh‖2m,h 6 Cν
∥∥w1

h −w2
h

∥∥2

m,h
ν−2

∥∥u2
h

∥∥2

v,h

+ C
(
κµ−1ν−1

∥∥b2
h

∥∥2

m,h
+ κµ−2

∥∥u2
h

∥∥2

v,h

)
κµ
∥∥d1

h − d
2
h

∥∥2

m,h

So, if ν−2
∥∥u2

h

∥∥
1,h

< 1 and κµ−1ν−1
∥∥b2

h

∥∥2

C
+ κµ−2

∥∥u2
h

∥∥2

1,h
< 1, that is, if the smallness conditions

(2.46) on f and g are satisfied, the operator Fh is a contraction on GM .

The above proofs show that Fh satisfies the hypotheses of Brouwer’s fixed-point theorem on GM .
Then, Fh has a unique fixed-point (uh, bh) in GM . Therefore, the existence and uniqueness of the
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solution (uh, bh) has been proved. In turn, the a priori estimate (2.47) follows directly from (2.48).
Now that uh and bh have been computed, we want to recover the pressure ph. Observe that ph is the
solution of

Bh(vh, ph) =

∫
Ω

f · vh dx−Ah(uh,vh)−Oh(uh,uh,vh)− Ch(bh,vh, bh) (2.51)

Applying Lemma 2.1, Lemma 2.3, Lemma 2.4 and Corollary 2.5 to bound Ah, Oh and Ch respectively,
we deduce that the right-hand side of the above equation defines a continuous linear functional on Xh.
The inf-sup condition in Lemma 2.6 gives the existence and uniqueness of ph ∈ Qh to the problem
(2.51). �

3 Error analysis

In this subsection, we present a priori error bounds for the proposed DG method. The proof uses
essentially the same techniques as in [32] where a similar result has been proved for the MHD problem
with Dirichlet boundary condition for the velocity together with zero tangential trace for the magnetic
field. We note that the solution (u, b, p) of the continuous MHD problem (2.1) satisfies

Ah((u, b), (u, b), (vh, ch)) + Bh((vh, ch), p) = L((vh, ch)), ∀(vh, ch) ∈W h, (3.1a)

Bh((u, b), qh) = 0, ∀qh ∈ Qh. (3.1b)

Let us begin by introducing an approximation result for the space Xh (see [19]). For k = 1, 2, 3,
there exists a continuous interpolation operator Ih defined fromH1(Ω) toXh such that, for all T ∈ Th
and e ∈ Fh :

∀v ∈H1(Ω), ∀qh ∈ Pk−1(T ),

∫
T

qh div(Ih(v)− v) dx = 0, (3.2a)

∀v ∈H1
T (Ω), ∀e ∈ Fh, ∀qh ∈ Pk−1(e),

∫
e

qh [[Ih(v)]] ds = 0. (3.2b)

Moreover, for s ∈ [1, k + 1] the following interpolation estimate holds :

∀v ∈Hs(Ω), ‖Ih(v)− v‖1,T 6 Ch
s−1
T ‖v‖s,∆T

, (3.3)

where ∆T is a suitable macro-element containing T.

We use the L2-projection of degree k − 1 onto Qh to approximate the pressure p. So there exists
approximationz ΠQ ∈ Qh (see [19]), defined on each T ∈ Th by

∀q ∈ Pk−1(T ),

∫
T

q(p−ΠQp) dx = 0, (3.4)

and satisy the following approximations properties for every integer s ∈ [0, k] :

‖p−ΠQp‖0,T ≤ Ch
s
T ‖p‖s,T , ∀p ∈ Hs(Ω) ∪ L2

0(Ω). (3.5)

We split the errors in two parts : eu = u− uh, eb = b− bh and ep = p− ph with

χu = Ih(u)− uh, ηu = u− Ih(u)

χb = Ih(b)− bh, ηb = b− Ih(b)

χp = ΠQ(p)− ph, ηp = p−ΠQ(p)

We have the following lemma for the error projection :
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Lemma 3.1 Let (u, b, p) ∈ Hk+1(Ω) ×Hk+1(Ω) × Hk(Ω) be a ssolution of the continuous MHD
problem (2.1). Let (uh, ph, bh) be the solution in Xh ×Qh ×Ch of the DG scheme (2.3). In addition

to the assumptions in Theorem 2.6, we assume that 1
min (ν,µ) ‖u‖H1(Ω) and κ1/2

ν1/2µ1/2 ‖b‖H1(Ω) are small

enough. Then, we have the following estimate on the errors :

ν ‖χu‖
2
v,h + κµ ‖χb‖

2
m,h

6 Ch2k
(
‖u‖2Hk+1(Ω) + ‖b‖2Hk+1(Ω) + ‖p‖2Hk(Ω) + ‖b‖2Hk+1(Ω)

(
‖u‖2Hk+1(Ω) + ‖b‖2Hk+1(Ω)

)) (3.6)

with C depending on the datas of the problem but not of the mesh size h.

Proof. From (3.1), we have for all (vh, ch) ∈W h and qh ∈ Qh :

Ah(u− Ih(u),vh) +Ah(Ih(u),vh) +Mh(b− Ih(b), ch) +Mh(Ih(b), ch) +Oh(u,u,vh)

+ Ch(b,vh, b)− Ch(b,u, ch) +Bh(vh, p−ΠQ(p)) +Bh(vh,ΠQ(p)) = L(vh, ch),

Bh(u− Ih(u), qh) +Bh(Ih(u), qh) = 0.

(3.7)

By the definition of Ih (c.f. (3.2a) and (3.2b)) and ΠQ (c.f. (3.4)), we have :

Bh(vh,ΠQ(p)− p) = −
∑
T∈Th

∫
T

(div vh)(ΠQ(p)− p) dx+
∑
e∈Fh

∫
e

{{ΠQ(p)− p}}[[vh]]N ds

=
∑
e∈Fh

∫
e

{{ΠQ(p)− p}}[[vh]]N ds

Bh(u− Ih(u), qh) = −
∑
T∈Th

∫
T

div(Ih(u)− u)qh dx+
∑
e∈Fh

∫
e

{{qh}}[[Ih(u)− u]]N ds

= 0.

So, from (3.7), we obtain :

Ah(Ih(u),vh) +Mh(Ih(b), ch) +Oh(u,u,vh) + Ch(b,vh, b)− Ch(b,u, ch) +Bh(vh,ΠQ(p))

= Ah(Ih(u)− u,vh) +Mh(Ih(b)− b, ch) +
∑
e∈Fh

∫
e

{{ΠQ(p)− p}}[[vh]]N ds+ L(vh, ch),

Bh(Ih(u), qh) = 0.

We next substract from (2.3) to obtain

Ah(χu,vh) +Mh(χb, ch) +Bh(vh, χp)

= Oh(uh,uh,vh)−Oh(u,u,vh) + Ch(bh,vh, bh)− Ch(b,vh, b) + Ch(b,u, ch)− Ch(bh,uh, ch)

+Ah(Ih(u)− u︸ ︷︷ ︸
−ηu

,vh) +Mh(Ih(b)− b︸ ︷︷ ︸
−ηb

, ch) +
∑
e∈Fh

∫
e

{{ΠQ(p)− p}}︸ ︷︷ ︸
−{{ηp}}

[[vh]]N ds,

Bh(χu, qh) = 0.

(3.8)

Combining inequalities of (3.8) with test functions (χu,χb, χp) and using (2.32)-(2.33), we obtain :

C
(
ν ‖χu‖

2
v,h + κµ ‖χb‖

2
m,h

)
≤ Ah(χu,χu) +Mh(χb,χb)

= −Ah(ηu,χu)−Mh(ηb,χb)−
∑
e∈Fh

∫
e

{{ηp}}[[χu]]N ds

− (Oh(uh,ηu,χu) +Oh(χu,u,χu) +Oh(ηu,u,χu))

+ (Ch(ηb,u,χb)− Ch(ηb,χu, b))− (Ch(χb,χu, b)− Ch(χb,u,χb))

+ (Ch(bh,ηu,χb)− Ch(bh,χu,ηb)).

(3.9)
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Let us bound every term in the right hand side of (3.9).
By the definition of Ah, we have

Ah(ηu,χu) := ν
∑
T∈Th

∫
T

curlηu · curl χu dx+ ν
∑
T∈Th

∫
T

(div ηu)(divχu) dx

− ν
∑
e∈FI

h

(∫
e

{{curl ηu}} · [[χu]]T ds+

∫
e

{{curlχu}} · [[ηu]]T ds
)

− ν
∑
e∈Fh

(∫
e

{{div ηu}}[[χu]]N ds+

∫
e

{{divχu}}[[ηu]]N ds
)

ν
∑
e∈FI

h

σ1

he

∫
e

[[ηu]]T · [[χu]]T ds+ ν
∑
e∈Fh

σ2

he

∫
e

[[ηu]]N [[χu]]N ds

(3.10)

Applying Cauchy-Schwarz inequality and (3.3), we have for the terms in the first row of (3.10) :

ν
∑
T∈Th

∫
T

curlηu · curl χu dx+ ν
∑
T∈Th

∫
T

(div ηu)(divχu) dx

≤ ν
( ∑
T∈Th

‖curlηu‖
2
0,T +

∑
T∈Th

‖div ηu‖
2
0,T

)1/2( ∑
T∈Th

‖curlχu‖
2
0,T +

∑
T∈Th

‖divχu‖
2
0,T

)1/2

≤ Cνhk ‖u‖Hk+1(Ω) ‖χu‖v,h
Moreover, combining the continuity of u and (3.2b), we have

ν
∑
e∈FI

h

∫
e

{{curlχu}} · [[ηu]]T ds+ ν
∑
e∈Fh

∫
e

{{divχu}}[[ηu]]N ds = 0.

So, for the second and the third rows of (3.10), it remains to bound the terms :

ν
∑
e∈FI

h

∫
e

{{curl ηu}} · [[χu]]T ds and ν
∑
e∈Fh

∫
e

{{div ηu}}[[χu]]N ds

Let us give detail proof for the bound of the first term. For this, let us introduce the standard Lagrange
interpolation operator of polynomial degree k, denoted Πh. So, we have∫

e

{{curl ηu}} · [[χu]]T ds =

∫
e

(
{{curl(u−Πhu)}} · [[χu]]T + {{curl(Πhu− Ihu)}} · [[χu]]T

)
ds (3.11)

For the first term in (3.11), we have∫
e

{{curl(u−Πhu)}} · [[χu]]T ds ≤ ‖{{curl(u−Πhu)}}‖0,e ‖[[χu]]T ‖0,e

Let e ∈ FIh such that e = ∂T1 ∩ ∂T2 with T1, T2 ∈ Th. Using the discrete trace inequality and the
approximation property of the Lagrange interpolation, we obtain

1√
|e|
‖{{curl(u−Πhu)}}‖0,e ≤ C

( 1

hT1

‖curl(u−Πhu)‖0,T1
+

1

hT2

‖curl(u−Πhu)‖0,T2

+ | curl(u−Πhu)|1,T1∪T2

)
≤ Chk−1 ‖u‖Hk+1(T1∪T2)

So, we have

ν
∑
e∈FI

h

∫
e

{{curl(u−Πhu)}} · [[χu]]T ds ≤ Cνh
k ‖u‖Hk+1(Ω)

( ∑
e∈FI

h

1

|e|
‖[[χu]]T ‖

)1/2

≤ Cνhk ‖u‖Hk+1(Ω) ‖χu‖v,h

(3.12)
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For the second term in (3.11), since Πhu− Ihu is polynomial, we can write

1√
|e|
‖{{curl(Πhu− Ihu)}}‖0,e ≤ C

( 1

hT1

‖curl(Πhu− Ihu)‖0,T1
+

1

hT2

‖curl(Πhu− Ihu)‖0,T2

)
By triangle inequality and (3.3), we have for each element T of Th

‖curl(Πhu− Ihu)‖0,T ≤ ‖curl(Πhu− u)‖0,T + ‖curl(u− Ihu)‖0,T ≤ Ch
k
T ‖u‖k+1,∆T

Then, we have

ν
∑
e∈FI

h

∫
e

(
{{curl(Πhu− Ihu)}} · [[χu]]T ≤ Cνh

k ‖u‖Hk+1(Ω) ‖χu‖v,h (3.13)

Combining (3.12) and (3.13), we obtain

ν
∑
e∈FI

h

∫
e

{{curl ηu}} · [[χu]]T ds ≤ Cνh
k ‖u‖Hk+1(Ω) ‖χu‖v,h . (3.14)

Similarly, we can obtain

ν
∑
e∈Fh

∫
e

{{div ηu}}[[χu]]N ds ≤ Cνh
k ‖u‖Hk+1(Ω) ‖χu‖v,h . (3.15)

For the terms in the last row of (3.10), we use (3.3) and similar arguments as above to obtain

ν
∑
e∈FI

h

σ1

he

∫
e

[[ηu]]T · [[χu]]T ds ≤ Cνh
k ‖u‖Hk+1(Ω) ‖χu‖v,h , (3.16)

ν
∑
e∈Fh

σ2

he

∫
e

[[ηu]]N [[χu]]N ds ≤ Cνh
k ‖u‖Hk+1(Ω) ‖χu‖v,h , (3.17)

Collecting the bounds (3.11), (3.11)-(3.17) yields

Ah(ηu,χu) ≤ Cνhk ‖u‖Hk+1(Ω) ‖χu‖v,h ≤
ν

10
‖χu‖

2
v,h + Ch2k ‖u‖2Hk+1(Ω) . (3.18)

Next, in view of the definition of Mh and the fact that Ch = Xh, the terms of Mh can be bounded
in a similar way as the terms of Ah to obtain :

Mh(ηb,χb) 6 Cκµh
k ‖χb‖m,h ‖b‖Hk+1(Ω) ≤

κµ

8
‖χb‖

2
m,h + Ch2k ‖b‖2Hk+1(Ω) . (3.19)

Similarly, using the estimate (3.5) for the L2-projection ΠQ, we obtain :∑
e∈Fh

∫
e

{{ηp}}[[χu]]N ds 6 C
∑
e∈Fh

(∫
e

he{{ηp}}2 ds
) 1

2
(∫

e

h−1
e [[χu]]N

2
ds
) 1

2

6 Chk ‖χu‖v,h ‖p‖Hk(Ω) ≤
ν

10
‖χu‖

2
v,h + Ch2k ‖p‖2Hk(Ω) .

(3.20)

For the terms on Oh in the third row of (3.9), we use Hölder’s inequality to obtain :

Oh(uh,ηu,χu) +Oh(χu,u,χu) +Oh(ηu,u,χu)

6
( ∑
T∈Fh

‖curluh‖20,T
)1/2

‖ηu‖L4(Ω) ‖χu‖L4(Ω) +
( ∑
T∈Fh

‖curlχu‖
2
0,T

)1/2

‖u‖L4(Ω) ‖χu‖L4(Ω)

+
( ∑
T∈Fh

‖curlηu‖
2
0,T

)1/2 ‖u‖L4(Ω) ‖χu‖L4(Ω)
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Using the Sobolev embedding H1(Ω) ↪→ L4(Ω) together with the Lp discrete Sobolev’s inequality
(2.20) with p = 4 and (3.3), we obtain

Oh(uh,ηu,χu) +Oh(χu,u,χu) +Oh(ηu,u,χu)

6 Chk ‖u‖Hk+1(Ω)

(
‖uh‖v,h + ‖u‖H1(Ω)

)
‖χu‖v,h + C ‖u‖H1(Ω) ‖χu‖

2
v,h

As a consequence, we have

Oh(uh,ηu,χu) +Oh(χu,u,χu) +Oh(ηu,u,χu)

6
ν

10
‖χu‖

2
v,h + Ch2k ‖u‖2Hk+1(Ω) + C ‖u‖H1(Ω) ‖χu‖

2
v,h

(3.21)

For the two first terms in (3.9), we have since [[b]]T = 0 on FIh :

Ch(ηb,u,χb)− Ch(ηb,χu, b)

= κ
∑
T∈Th

(∫
T

(u× ηb) · curlχb dx−
∫
T

(χu × ηb) · curl b dx
)
− κ

∑
e∈FI

h

∫
e

{{u× ηb}} · [[χb]]T ds
(3.22)

Using (2.20) and the fact that

‖u‖L∞(Ω) ≤ C ‖u‖Hk+1(Ω) and ‖curl b‖L4(Ω) ≤ C ‖curl b‖Hk(Ω) ,

the two first terms in (3.22) can be bounded as follows :

κ
∑
T∈Th

(∫
T

(u× ηb) · curlχb dx−
∫
T

(χu × ηb) · curl b dx
)

6 Cκ
(
‖u‖L∞(Ω) ‖ηb‖L2(Ω) ‖curlχb‖L2(Th) + ‖χu‖L4(Ω) ‖ηb‖L2(Ω) ‖curl b‖L4(Ω)

)
6 Cκ

(
hk ‖b‖Hk+1(Ω) ‖u‖Hk+1(Ω) ‖χb‖m,h + hk ‖b‖Hk+1(Ω) ‖χu‖v,h ‖curl b‖Hk(Ω)

)
≤ Cκhk ‖b‖Hk+1(Ω)

(
‖u‖Hk+1(Ω) ‖χb‖m,h + ‖curl b‖Hk(Ω) ‖χu‖v,h

)
(3.23)

For the last term in (3.22), by using the discrete inequality and the Lagrange interpolation Πh, we
obtain :

κ
∑
e∈FI

h

∫
e

{{u× ηb}} · [[χb]]T ds

= κ
∑
e∈FI

h

∫
e

{{u× (Ih(b)−Πh(b))}} · [[χb]]T ds+ κ
∑
e∈FI

h

∫
e

{{u× (Πh(b)− b)}} · [[χb]]T ds

≤ Cκ ‖u‖L∞(Ω)

( ∑
e∈FI

h

he ‖(Ih(b)−Πh(b))‖20,e
) 1

2
( ∑
e∈FI

h

h−1
e ‖[[χb]]T ‖

2
0,e

) 1
2

+ Cκ ‖u‖L∞(Ω)

( ∑
e∈FI

h

he ‖(Πh(b)− b)‖20,e
) 1

2
( ∑
e∈FI

h

h−1
e ‖[[χb]]T ‖

2
0,e

) 1
2

≤ Cκhk ‖b‖Hk+1(Ω) ‖u‖Hk+1(Ω) ‖χb‖m,h

(3.24)

Collecting (3.23) and (3.24) in (3.22), we obtain

Ch(ηb,u,χb)− Ch(ηb,χu, b) ≤ κhk ‖b‖Hk+1(Ω)

(
‖u‖Hk+1(Ω) ‖χb‖m,h + ‖curl b‖Hk(Ω) ‖χu‖v,h

)
≤ ν

10
‖χu‖

2
v,h +

κµ

8
‖χb‖

2
m,h + Ch2k ‖b‖2Hk+1(Ω) ‖u‖

2
Hk+1(Ω)
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+ Ch2k ‖b‖4Hk+1(Ω) . (3.25)

In a similar way, we have

Ch(χb,u,χb)− Ch(χb,χu, b)

= κ
( ∑
T∈Th

∫
T

(u× χb) · curlχb dx−
∑
e∈FI

h

∫
e

{{u× χb}} · [[χb]]T ds−
∑
T∈Th

∫
T

(χu × χb) · curl b dx
)

6 Cκ ‖u‖L4(Ω) ‖χb‖L4(Ω) ‖curlχb‖L2(Th)

+ κ
( ∑
e∈FI

h

h‖u‖4L4(e)

)1/4( ∑
e∈FI

h

h‖χb‖4L4(e)

)1/4( ∑
e∈FI

h

h−1
e ‖[[χb]]T ‖

2
0,e

) 1
2

+ κ ‖χu‖L4(Ω) ‖χb‖L4(Ω) ‖curl b‖L2(Ω) .

Then, applying (2.20) and discrete trace inequality, we have

Ch(χb,u,χb)− Ch(χb,χu, b) ≤ Cκ
(
‖χb‖

2
m,h ‖u‖H1(Ω) + ‖b‖H1(Ω) ‖χu‖v,h ‖χb‖m,h

)
≤ Cκ ‖χb‖

2
m,h ‖u‖H1(Ω) +

κµ

8
‖χb‖

2
m,h + C

κ

µ
‖b‖2H1(Ω) ‖χu‖

2
v,h

(3.26)

Finally, the following bound for the two last terms in (3.9) can be obtained is a similar way :

Ch(bh,ηu,χb)− Ch(bh,χu,ηb)

6 Cκ ‖bh‖m,h
(
hk ‖u‖Hk+1(Ω) ‖χb‖m,h + hk ‖curl b‖Hk(Ω) ‖χu‖v,h

)
≤ κµ

8
‖χb‖

2
m,h +

ν

10
‖χu‖

2
v,h + h2k ‖b‖2Hk+1(Ω) + h2k ‖u‖2Hk+1(Ω) .

(3.27)

Thus, combining all estimates, we obtain the estimate (3.6) by assuming that 1
min (ν,νm) ‖u‖H1(Ω)

and
√
κ√
ννm
‖b‖H1(Ω) are small enough.

�

As a consequence, we have the following result

Theorem 3.1 Let (u, b, p) ∈ Hk+1(Ω) ×Hk+1(Ω) ×Hk(Ω) be a ssolution of the continuous MHD
problem (2.1). Let (uh, bh, ph) be the solution in Xh ×Qh ×Ch of the DG scheme (2.3). In addition

to the assumptions in Theorem 2.6, we assume that 1
min (ν,µ) ‖u‖H1(Ω) and κ1/2

ν1/2µ1/2 ‖b‖H1(Ω) are small

enough. Then, we have the following error estimate :

ν ‖u− uh‖2v,h + κµ ‖b− bh‖2m,h
6 Ch2k

(
‖u‖2Hk+1(Ω) + ‖b‖2Hk+1(Ω) + ‖p‖2Hk(Ω) + ‖b‖2Hk+1(Ω)

(
‖u‖2Hk+1(Ω) + ‖b‖2Hk+1(Ω)

)) (3.28)

with C depending on the datas of the problem but not of the mesh size h.

Proof. Since u−uh = ηu+χu and b−bh = ηb+χb, then the result is a direct consequence of Lemma
3.1, (3.3) and the triangle inequality. �
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