Regularity results for a model in magnetohydrodynamics with

imposed pressure
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Abstract

The magnetohydrodynamics (MHD) problem is most often studied in a framework where Dirichlet type bound-
ary conditions on the velocity field is imposed. In this Note, we study the (MHD) system with pressure
boundary condition, together with zero tangential trace for the velocity and the magnetic field. In a three-
dimensional bounded possibly multiply connected domain, we first prove the existence of weak solutions in the
Hilbert case, and later, the regularity in W7 (Q) for p > 2 and in WP(Q) for p > 6/5 using the regularity
results for some Stokes and elliptic problems with this type of boundary conditions. Furthermore, under the
condition of small data, we obtain the existence and uniqueness of solutions in W7 (Q) for 3/2 < p < 2 by

using a fixed-point technique over a linearized (MHD) problem.
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1 Introduction

Let © be an open bounded set of R? of class C!>!. In this work, we consider the following incompressible stationary
magnetohydrodynamics (MHD) system: find the velocity field u, the pressure P, the magnetic field b and the

constant vector & = (v, ..., ay) such that for 1 <i < I:

—vAu+ (curlu) X u+ VP — k(curlb) xb=f and divu=h inQ,

kp curleurld — kcurl(u x b) =g and divb=0 1in €,

uxn=0 and bxn=0 onT, (1.1)
P=PFP only and P = Fy+a; only,

(w-n,1l)p, =0, and (b-n,l)p, =0, V1<i<]TI

where I' is the boundary of ) which is not necessary connected. Here I' = UiI:o I'; where T'; are the connected
components of I' with I'y the exterior boundary which contains 2 and all the other boundaries. We denote by n
the unit vector normal to I'. The constants v, u and k are constant kinematic, magnetic viscosity and a coupling
number respectively. We refer to [11,13] for further discussion of typical values for these parameters. The vector
f, g and the scalar h and P, are given. In this work, we assume that v = y = k = 1 for convenience. Using
the identity u - Vu = (curlu) x u + 3V|ul?, the classical nonlinear term w - Vu in the Navier-Stokes equations
is replaced by (curlw) x u. The pressure P = p + |u|? is then the Bernoulli (or dynamic) pressure, where p is
the kinematic pressure. The boundary conditions involving the pressure are used in various physical applications.
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For example, in hydraulic networks, as oil ducts, microfluidic channels or the blood circulatory system. Pressure
driven flows occur also in the modeling of the cerebral venous network from three-dimensional angiographic
images obtained by magnetic resonance. We note that the MHD system (1.1) has been extensively studied by
many authors. We note that most of the contributions are often given where Dirichlet type boundary conditions
on the velocity field are imposed. At a continuous level, we can refer, for example to [2,25] for the existence and
the regularity of the solutions of (1.1), to [1] for the global solvability of (1.1) under mixed boundary conditions
for the magnetic field. For the discretization approaches of (1.1), a few related contributions include mixed finite
elements [15,17,23], discontinuous Galerkin finite elements [?] or iterative penalty finite element methods [12] and
so on. The boundary condition under the form P = Py + a; on I';, i = 1,...,I was first introduced in [9, 10] for
the Stokes and the Navier-Stokes systems in steady hilbertian case. The authors studied the differences a; — ay,
i = 1...I which represent the unknown pressure drop on inflow and outflow sections I'; in a network of pipes.
This work is extended to LP-theory for 1 < p < oo in [7]. In our work, we study the MHD system (1.1) with
pressure boundary condition, together with no tangential flow and no tangential magnetic field on the boundary.
Up to our knowledge, with these type of booundary conditions, this work is the first one to give a complete
LP-theory for the MHD system (1.1) not only for large values of p > 2 but also for small values 3/2 < p < 2 in

Q) C R? domain with a boundary I' not necessary connected.

The work is organized as follows. We start with presenting the main results of our work in section 2. In
section 3, we introduce the necessary notations and some useful results. Section 4 is devoted to the study of the
linearized MHD system in Hilbert space. Using Lax-Milgram theorem, we prove the existence and uniqueness
of weak solution in H'(Q) x H'(Q) x L?(Q). Later, we study the LP-theory for the linearized MHD system in
section 5. In particular, the proof of the regularity W2 ?(Q) with 1 < p < g for a non-zero divergence condition
is presented in the Appendix (see Section 7). Finally, the nonlinear MHD system is discussed in section 6. The
proof of the existence of weak solution in the Hilbertian case is based on the Leray-Schauder fixed point theorem.
Then, we prove the regularity of the weak solution in W' ?(Q) with p > 2, and W*?(Q) with p > S. For this, we
use the regularity results for the Stokes and some elliptic equations combining them with a bootstrap argument.
The existence of a weak solution in W7 (Q2) with % < p < 2 is proved by applying Banach’s fixed-point theorem

over the linearized problem.

Some results of this work are announced in [21]

2 Main results

In this section, we briefly discuss the main results, for which the following notations are needed:

For p € [1,00), p’ denotes the conjugate exponent of p, i.e. % =1- %. We introduce the following space
- - . 1 1 1
H"P(curl,Q) :={v e L"(Q); curl v € LP(Q)}, with - == 3 (2.1)
r.op

equipped with the norm

V|| v (curr) = |v]lLr@) + || curlv|| Ly ().

The closure of D(2) in H "P(curl, Q) is denoted by H " (curl, Q) with
H;"(curl,Q) :={v e H""(curl,Q); vxn=0 onTl}.

The dual space of H " (curl, ) is denoted by [H ;" (curl,2)]" and its characterization is given in Proposition

3.1. We introduce also the kernel

K5 (Q)={ve LP(Q); divv=0, curlv=0, v xn=0 on I},
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which is spanned by the functions Vg € W4(Q) for any 1 < ¢ < oo [6, Corollary 4.2] and ¢ is the unique

solution of the problem

—Ag¥ =0 inQ, ¢V|lr,=0 and ¢"|r, =constant, 1 <k <T

2.2
< nql ’ > _6ik7 1§k§1u and <anq1]V7 1>FO:_1. ( )

We will use the symbol o to represent a set of divergence free functions. For exemple the space L? () is the
space of functions in L?(Q)) with divergence free. We will denote by C an unspecified positive constant which

may depend on €2 and the dependence on other parameters will be specified if necessary.

The first theorem is concerned with the existence of weak solutions in the case of Hilbert spaces for the following
MHD problem:

— Au+ (curlu) x u+ VP — (curlb) xb=f and divu=h inQ,
curlcurlb — curl(u xb) =g and divb=0 in Q,

uxn=0 and bxn=0 onT, (MHD)
P=PF only and P=PFPy+a; onl},

(w-n,1)r,=0 and (b-n,l)p, =0, V1 <i<TI

The proof is given in Subsection 6.1 (see Theorem 6.1). We note that in the case when 9 is not connected,
to ensure the solvability of problem (MHD), we need to impose the conditions for 4 and b on the connected
components I';: (u-n,1)r, =0 and (b -n,1)r, =0 for 1 <i < I. (See [6] and [7] for an equivalent form of
these conditions). Of course, if 99 is connected, the above conditions are no longer necessary.

Theorem 2.1. (Weak solutions of the (MHD) system in H'(Q)). Let f,g € [Hy*(curl,Q)]', h = 0 and
Py € H™=(T) with the compatibility conditions

voe Ky(Q), (g.v)q,, =0, (2.3)
divg=0 inQ, (2.4)

where (-, -)q, = denotes the duality product between [H " (curl, Q)] and Hy" (curl, Q). Then the (MHD) problem
has at least one weak solution (u,b, P,a) € H'(Q) x H'(Q) x L*(Q) x R such that

el g1y + 1Bl g @) + 1Pl L2 < M,

where M = C(H'fH[Hg’z(curl,Q)]’ + ”g”[Hg’z(curl,Q)]’ + 1Poll r-1/2(ry) and ¢ = (ou, ..., ar) defined by

(curlb) x b- Vg dz — / (curlu) x u - V¢ dz, (2.5)
Q

=,V )a,, - <P0,quN'n>F+/

Q

where (-,-)r denotes the duality product between H~'/?(T) and HY/?(T).

In addition, suppose that f, g and Py are small in the sense that

2

Cr03M < 302 ’

(2.6)

where Cp is the constant in (3.6) and C1, Cy are the constants defined in (6.15). Then the weak solution (u,b, P)
of (MHD) is unique.

The next two theorems are concerned with generalized solutions in WP () for p > 2 and strong solutions in
W?2P(Q) for p > 6/5. The existence of weak solution in WP (Q) for 3 < p < 2isnot trivial. We will precise this

case later.
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Theorem 2.2. (Weak solutions in W P (Q) with p > 2 for the (MHD) system). Let p > 2. Suppose that
f,g € [H| > (curl,Q))’, h =0 and Py € W'~ +"(I') with the compatibility condition (2.4) and

Voe KX (Q), (g.v)q, , =0. (2.7)
Then the weak solution for the (MHD) system given by Theorem 2.1 satisfies
(u,b, P) € WHP(Q) x WHP(Q) x WHT(Q).
Moreover, we have the following estimate:
sl Bl 1Pl SCUF oz oy 190 g oy + I Pollwseteey)

Theorem 2.3. (Strong solutions in WP (Q) with p > g for the (MHD) system). Let us suppose that S is of
class C*>' and p > g. Let f, g and Py with the compatibility conditions (2.4) and (2.7) and

feL’)(Q), geL”(Q), h=0 and Pye W' »?).

Then the weak solution (u,b, P) for the (MHD) system given by Theorem 2.1 belongs to
W2P(Q) x WP (Q) x W LP(Q) and satisfies the following estimate:

)

lellvwzo () + 1bllw2o ) + 1Plwrs o) < CUF @) + 19lle) + 170010 0

We refer to Theorem 6.3 and Theorem 6.4 for the proof of the above result, where we use the estimates obtained
in the Hilbert case and a bootstrap argument using regularity results of some Stokes and elliptic problems in [6]
and [7].

To deal with the regularity of the solutions of the (M/HD) system in W17 (Q) with 3 < p <2, we need to study
the following linearized MHD system: Find (u, b, P, ¢) with ¢ = (¢1,...,¢r) such that for 1 <i < I:

—Au+ (curlw) X u+ VP — (curld) xd=f and divu=h inQ,
curlcurld — curl(u xd) =g and divb=0 in ,
uxn=0 and bxn=0 onT, (2.8)
P=PF only and P=PFy+c¢ onl},
(u-n,l)r, =0, and (b-n,1)r, =0.

The next theorem gives existence of weak and strong solutions for the linearized problem (2.8)

Theorem 2.4. (Existence of weak and strong solutions of the linearized MHD problem). Suppose that
f.g € [H} P (curl, Q)), Pye W= (T), heWW(Q)

with the compatibility conditions (2.4) and (2.7).

(1). For any p > 2, if curlw € L¥(Q), d € WL*(Q) where s is given by

3. 3 . .

s=3 if 2<p<3, s>§ if p=3 and s=r ifp> 3,

then the linearized system (2.8) has a unique solution (u,b,P,c¢) € WP(Q) x WHP(Q) x W' (Q) x R with
c=(c1,...,c1). Moreover, we have the estimate:

el sone) + Bbllwineny + 1Py SCO+ leurlwl ooy + Il o) 1 o ourn sy

FIP oy 190 e gy (100510 e gy 4 Iy, Dl )
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(2). Let 3 <p <2 Ifcurlw e L3%(Q) and d € W};3/2(Q), then the linearized problem (2.8) has a unique solution
(u,b, P,c) € WHP(Q) x WHP(Q) x WhT(Q) x RY. Moreover, we have the following estimates:

[l .y + B,y < OO+ leurlell e g + lallws.arz ) (1 gz guen g + B0 2.e

190 1137 ey T (O + leurlwll sz + Iz @) Il )
and

2
1Pllur.r ey < COL+ lleurlw] sz gy + Idllwiarz@)® % (1l o urngy + P02

1915 ey + (1 CUrL0] a2 gy + llgr.3/20) [l ):
(8). Also for any p € (1, 00), if Q is of class C*', h =0 in Q and
feLPQ), geL’(Q), curlw € L¥*(Q), d e W ¥2(Q), and Py € W' »7(I)
with the compatibility conditions (2.4) and (2.7), then (u,b, P,¢) belongs to W*P(Q) x WP(Q) x W'P(Q) x RT and
satisfies the estimate:

H“HW?,p(Q) + ”bHWQ»P(Q) + ”P”WLP(Q) <O+ ||curl'w||L%(Q) + ||dHW1=3/2(Q))

X (”f”LP(Q) + Hg”LP(Q) + HPOHWF%,p(F))

where C' = C(Q,p) if p > 6/5 and C = C(Q,p)(1 + chrlw”L%(m + ldllyyr1.3/2¢y) if 1 <p <6/5.

We refer to Theorem 5.4, Theorem 5.7, Theorem 5.1 and Theorem 5.11 for the proof of the above results. Note
that in the above theorem, to prove the existence of weak solutions in W7 (Q) with 3/2 < p < 2, we use a duality
argument.

We also note that we proved more general existence results in Corollary 5.10 where the regularity of the pressure
is improved by supposing a data Py less regular.

Finally, the next result shows the existence and uniqueness of weak solutions with 3/2 < p < 2 for the
nonlinear (MHD) problem (see Theorem 6.5). The proof is essentially based on the estimates obtained above for
the linearized problem (2.8).

Theorem 2.5. (Regularity W"P(Q) with 3 < p < 2 for the (MHD) system). Assume that 3 < p < 2 and r with
1= %Jr +. Let us consider f,g € [Hgl’p/ (curl,Q)), P, € W=+ (T) and h € W' (Q) with the compatibility

T

conditions (2.4) and (2.7).
(i) There exists a constant & such that, if
”f”[HS”p,(curl,Q)}’ + HgH[HS/’p/(curl,Q)]’ + ||PO||W1—%,T(F) + ||h’||W1v7‘(Q) S 61
Then, the (MHD) problem has at least one solution (u,b, P,a) € WP (Q) x WP(Q) x W (Q) x RL. Moreover,
we have the following estimates:

||’u’||W1’p(Q)+||b||W11p(Q) <Cl( ||‘f||[HS/’p/(curl,Q)]’+ HgH[Hg/’p,(curl,Q)]’ +||PO||W17%7(F)

(2.9)
Al )

||P||W1vT(Q)<Cl(1 + 0*77) (”f”[Hg,vP' (curl,Q)]’+||gH[Hg/'p, (curLQ)]’ +HP0HW1—%J‘(F)

Al @)
where §; = (2C?C*)~t, C1 = C(1+C*n)? with C > 0, C* > 0 are the constants given in (6.25) and n defined by
(6.26). Furthermore, we have for all 1 <i <1

O‘i:<favqiN>Q_/

Q
(ii) Moreover, if the data satisfy that

(2.10)

(curlw) x u - V¢ dx +/

(curlb) x d- VY dz + [ (h Fy)Va? - do
Q r

||f||[Hg/~P'(Cur1’Q)]/ + ||gH[Hg,’p,(Cul‘l,Q)]’ + HPOHWI—%,T(F) + HhHleT(Q) < 0y,
for some 8 €]0, 61], then the weak solution of (MHD) problem is unique.
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3 Notations and preliminary results

Before studying the MHD problem (MHD), we introduce some basic notations and specific functional framewor.
If we do not state otherwise, £ will be considered as an open bounded domain of R3, which is not necessary
connected, of class at least C!! and sometimes of class C*!. We denote by I';, 0 < i < I, the connected

components of ', [y being the boundary of the only unbounded connected component of R?\Q.

The vector fields and matrix fields as well as the corresponding spaces are denoted by bold font. We will use
C to denote a generic positive constant which may depend on ) and the dependence on other parameters will
be specified if necessary. For 1 < p < oo, LP(Q) denotes the usuel vector-valued LP-space over €. As usual, we
denote by W ™P(Q) the Sobolev space of functions in L”(Q2) whose weak derivatives of order less than or equal
to m are also in L”(Q). In the case p = 2, we shall write H™(Q) instead to W™?(Q). If p € [1,00), p’ denotes

the conjugate exponent of p, i.e. 1% =1- %. We define the spaces

XP(Q) ={v e LP(Q); div v € LP(2), curlv € LP(Q)},
which is equipped with the norm:
[0l xp (@) = 0l Lr ) + leurlv][ Lo ) + [divell Lo g -
The subspaces X% (Q2) and V& (Q2) are defined by
X5(Q) = {v e LP(Q); div v € LP(Q2), curlv € LP(Q), v x n =0 onT},
VR(Q) = {v e X§(Q); diveo=0 inQ}.

When p = 2, we will use the notation X x(Q) instead to X (2). We denote by D(Q) the set of smooth functions

(infinitely differentiable) with compact support in Q. For p,r € [1,00), we introduce the following space
1 1 1
H"?(curl,Q) :={v € L"(Q); curl v € LP(Q)}, with P + 3 (3.1)

equipped with the norm
||'U||H“p(curl,Q) = HUHLT(Q) + || CUI‘l’UHLp(Q).
It can be shown that D(Q) is dense in H "P(curl, Q) (cf. [24, Proposition 1.0.2] for the case r = p). The closure
of D(Q) in H"P(curl, ) is denoted by H;”(curl, ) with
H;"(curl,Q) :={v e H"P(cur,Q); vxn=0 onTl}.

D(Q) is dense in H;"(curl,Q) and its dual space denoted by [H ;" (curl,Q)]" can be characterized as follows
(cf. [7, Lemma 2.4], [7, Lemma 2.5] and [24, Proposition 1.0.6] for the case r = p):

Proposition 3.1. A distribution f belongs to [Hy? (curl, Q)] iff there exists F € L’ (Q) and ¢ € " (Q) such
that f = F + curlt. Moreover, we have the estimate :

|l umtny < ,_pinf | max{1Fl e oy, 19 oy}

Next we introduce the kernel
K% (Q)={ve LP(Q); divv=0, curlv=0, v xn =0 onI'}.

Thanks to [6, Corollary 4.2], we know that this kernel is of finite dimension and spanned by the functions V¢,

1 <i < I, where ¢ is the unique solution of the problem

~A¢¥=0 inQ, ¢"r,=0 and ¢"|r, =constant, 1 <k<T

3.2
<8nqu, 1>Fk:5“€’ 1<k<I, and <8an\', 1>F0:71. (32
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Moreover, the functions Vg, 1 < i < I, belong to W4(Q) for any 1 < ¢ < co. We will use also the symbol o to
represent a set of divergence free functions. In other words, if X is a Banach space, then X, = {v € X; divwv =
0 inQ}.

We recall some useful results that play an important role in the proof of the regularity of solutions in this work.
We begin with the following result (see [6, Theorem 3.2.])

Theorem 3.1. The space X5 (Q) is continuously embedded in WP (Q) and there exists a constant C, such that
for any v in X5 (Q):
I

ol wrey < Clvllzr@) + | div ollo) + [eurl v go @) + > [(v-n, Dr,
=1

). (3.3)

And more generally (see [6, Corollary 5.3])
Corollary 3.2. Let m € N* and Q of class C"™'. Then the space
X™P(Q)={ve L[’(Q); div ve W™ 1P(Q), curlve W™ 1P(Q), v-ne Wmfi’p(F)}
is continuously embedded in W™ P(Q) and we have the following estimate: for any function v in W™P(Q),

wmr () < e (Q) wm—ve (o) H iV vllw m-1.0(q) -1 .
([ v]] <C([lvll zr@)Hlcurl v H| div | Hoxnll s ) (3.4)

We also recall the following result (cf. [6, Corollary 3.2]) which gives a Poincaré inequality for every function
veW'P(Q) withvxn=0onT.

Corollary 3.3. On the space X%,(2), the seminorm

I
v [leurl v o () + [|div ollLe@) + D [(v-n, 1| (3.5)
i=1
is equivalent to the norm || - || xr(q) for any 1 < p < oo. In particular, we have the following Poincaré inequality
for every function v € WP (Q) withv x n= 0 on T:

1

[l iy < Cp(lIdivoll g + lleurloll gy + D [{v-n, D,
i=1

) (3.6)

where Cp = Cp(2) > 0. Moreover, the norm (3.5) is equivalent to the full norm |- [|y1.0(q) on X5 (Q).

Let us consider the following Stokes problem:

— Au+VP=f and divu=h in,
uxn=0 onl,

P=F only and P=PFPy+c¢ onl},
(w-n,1)p, =0, 1<i<I

(Sn)

Then, the following proposition is an extension of that in [6, Theorem 5.7] to the case of non-zero divergence
condition (h # 0). It is concerned with the existence and uniqueness of the weak and strong solutions for the
Stokes problem (Sar).

Proposition 3.2. We assume that Q is of class C%>'. Let f, h and Py such that
fe[H Y (curl, Q)), he W' (Q) and PyeW'"V/(T),

with r < p and + < % + %. Then, the problem (Sx) has a unique solution (u, P) € WhP(Q) x WL (Q) and

constants c1, ..., cy satisfying the estimate:

lullwrr @) + [1PIw @) < CU g o (ourt, ayp T IPlw @) + 1Pollw 1-2/mr 1y ) (3.7)
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and cy,...,cy are given by
- v N ’ o 1o — v N .
C’L - <f; qz >[HJ 2P (curl, Q)]’XH(; 3P (Curl,Q) + A (h PO) ql nda (38)

Moreover, if f € LP(Q), h € W'P(Q) and Py € Wl_%’p(l"), then (u, P) belongs to W*P(Q) x WLP(Q) and

satisfies the estimate

I
el oy + 1Pl oy < s (15l oy + Mol oy + DBl oo po + D0 lel), (39)
i=1
where Cg = Cg(£2) > 0.

Proof. To reduce the non vanishing divergence problem (Sxr) to the case where divu = 0 in €, we consider the

problem
Af=h inQQ and 6=0 onl.

Since h € WL T(Q), it has a unique solution § € W37 () < W?2P?(Q), with (cf. [14, Theorem 1.8])

10w 2.0 () < Cllhllwrrq)- (3.10)
Taking w = V 6 and defining
I
w=w— Z(w -m, ), grad g, (3.11)
i=1

we see that w € W P(Q) with div @ = h, curl®w = 0in Q, @ xn = 0 on I' and (w - n, 1)p, = 0 for any
1 <i < I. Finally, taking z = u — w, we see that the problem (Sxr) can be reduced to the following problem for
z and P:

—Az+VP=f+Aw and divz=0 in Q,
zxn=0 onl,

P=Py onl'y and P = PFy+ ¢ only,
(z-m,Lp, =0, 1<i<I.

(3.12)

Since w = V0 and A(VgY) = 0, it follows from (3.11) that A @ = V (Af) € L"(Q) < [H} ¥ (curl, Q) and
fQ Aw - Vg dx = 0, we deduce from [6, Theorem 5.7|, the existence of a unique solution (2, P, ¢) € WP (Q) x

W (Q) xR of (3.12) with ¢ = (1, . .., cr) given by (3.8). Moreover, using (3.10), we have HAGJH[
C[|h[ly1.r () and then (2, P) satisfies the estimate:

<
Hg/"p/ (curl, )]’ —

12l w @) + 1Plwoiey < CIF g o e,y + 1w e + I Polliw 1s/mncry ). (3.13)

As a consequence, (u, P) = (z + w, P) € W P(Q) x W' (Q) is the unique solution of (Syr) and the estimate
(3.7) follows from (3.10) and (3.13).

Now, we suppose that f € L*(Q), h € W'P(Q) and Py € W'~1/P»(T'). We know that (u, P) belongs to
WP (Q) x WLT(Q). We set z = curlu. Since u x n =0 on I, we have z-n = 0 on I' and then z belongs to
X n(Q). By Theorem 3.1, the function z belongs to W**(Q). Then, u satisfies

we LP(Q), divu=he W'P(Q), curlu € W'P(Q) and uxn=0onT.

We deduce from Corollary 3.2 (with m = 2) that « belongs to W2 (Q). O

We need also some regularity results for the following elliptic problem
—Ab=g and divb=0 in,
(En){bxn=0 onl
(b-n,1)p, =0, VI<i<I,
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which can be seen as a Stokes problem without pressure. We note that (£x) is well-posed. Indeed, observe that
the condition divg = 0 in 2 is necessary to solve (£y) and then we can verify that it is equivalent to the following
problem:

—Ab=g in

divb=0, and bxm=0 onT, (3.14)

(b-n,)r, =0, VI<i<I,

where we have replaced the condition div b = 0 in Q by div b = 0 on I'. Next, we know that for any b € W ?(1)
such that div b € W ?(Q2), we have (cf. [3] or [16] for b € W 2P(Q)):

ob
div b =dive b, + 5~ -n—2Kb-n onT, (3.15)
n
where b; is the tangential component of b, K denotes the mean curvature of I' and divy is the surface divergence.
Then, using (3.15), the problem (3.14) is equivalent to: find b € W “*(Q) such that

—Ab=g in (2,

b
bxn=0 and g—n-n—QKb-n:O onl, (3.16)

(b-m,1)p, =0, VI<i<I,

b
where the condition g—n -n —2Kb-n =0 onl is a Fourier-Robin type boundary condition.
We begin with the following regularity result for (£57) which can be found in [6, Corollary 5.4.].

Theorem 3.3. Assume that §2 is of class C*'. Let g € LP(Q) satisfying the compatibility conditions
VUEK%(Q), /Qg~'vd:13=O, (3.17)
divg=0 inQ. (3.18)
Then the elliptic problem (Ex7) has a unique solution b € WP (Q) satisfying the estimate

1Bl 20(0) < CrllgllLr() - (3.19)

We need also the following useful result for (£xr) which gives an improvement of that in [6, Proposition 5.1].
Indeed, we consider the dual space [H ¥ (curl, Q)] with 1 = % + 1 (c.f. (3.1) and Proposition (3.1)) for data in
the right-hand side instead of [Hg/’p/ (curl,Q)]".

Lemma 3.4. Let Q of class C>'. Let g € [HS,’p/(curl, 0] satisfying the compatibility conditions

Vv e KZfV(Q)’ <g’ U> [Hg/’p,(curl,Q)]’ ><H6'/’p/ (curl,) =0, (320)

divg=0 nQ. (3.21)
Then, the elliptic problem (Exr) has a unique solution b € W P(Q) satisfying the estimate:
bl < C gz curtny (322

Proof. Using the characterization of the dual space [H Sl’p / (curl, Q)] given in Proposition 3.1, we can write g as:

g=G+curl¥, where GeL"() and Ve LP(Q). (3.23)
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Note that, from (3.2), for any 1 < i < I, (curl ¥, VgV )q = 0, then it follows from (3.20) and (3.23) that G also
satisfies the compatibility condition (3.20). Similarly, by (3.23), we have div G = 0. Thanks to Theorem 3.3, the
following problem:

—Ab; =G inQ and divb; =0 in{,
b xn=0 onl,
(by-n,U)p, =0, VI<i<I
has a unique solution b; € W?"(Q) satisfying the estimate:
b1l w2 ) < ClGI e - (3.24)

Next, since curl ¥ € [Hgl (curl, Q)] and satisfies the compatibility conditions (3.20), by [6, Proposition 5.1.] the
following problem

—Aby =curl¥V inQQ and divby; =0 in{,
boxn=0 onl,

(by-m, 1), =0, VI<i<I

has a unique solution by € W'?(Q) satisfying the estimate:

||b2||W1»P(Q) <C ||Cur1‘1’||LP(Q) : (3.25)
Since 1 = % + 3, W»"(Q) — W'P(Q). Then, b = by + by belongs to W'*(Q) and it is the unique solution of
En). The estimate (3.22) follows from (3.24) and (3.25). O
(
Remark 3.4.

(1). We note that the reqularity C** in Lemma 5./ can be reduced to C*. Indeed, we can verify that the Stokes
problem (Ex) is equivalent to the following variational frmulation (c.f. [6, Proposition 5.1]): Find b € WP(Q)
such that for any a € V?\;(Q):

/ curld - curladz = (g, a) (3.26)
Q

[Hgl’p/ (curl,Q))’ XHS/"p/ (curl, Q)"

Thanks to [6, Lemma 5.1], if Q is of class CY'', the following infi-sup condition holds: there ewists a constant

B >0, such that:
Jocurlb- curl adz

inf sup > p. (3.27)
ac V}’I\’,'(Q) be V}\D](Q) || b” WP (Q) Ha” WLP’(Q)
a#0 b#0

So, problem (3.26) has a unique solution u € V& (Q) C WP(Q) since the right-hand sides defines an element of
(VR ().

(2). In the classical study of the Stokes and Navier-Stokes equations, the pressure P is obtained thanks to a
variant of De Rham’s theorem (see [3, Theorem 2.8]). Indeed, let Q C R3 be a bounded Lipschitz domain and
FeW P(Q), 1< p< oo satisfying

Yov € DU(Q), <f,'U>D'(Q)><'D(Q) =0.
Then there exists P € LP(2) such that f = VP. Unlike the case of Dirichlet boundary condition, the pressure in
the (MHD) problem can be found independently of the velocity w and the magnetic field b. Indeed, the pressure
P is a solution of the problem
AP =div f — div((curlw) x u) + div((curld) x d) in Q
P=P only and P=Fy+a; onl;.

So, when we talk about the regularity W (Q) or WP (Q) it concerns (u,b) and we mean that (u,b, P) is the
weak or strong solution of the (MHD) problem.
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4 The linearized MHD system: L?-theory

In this section we take w and d such that:

curlw e L*?(Q), deL?*Q), divd=0inQ, (4.1)

and we consider the following linearized MHD system: Find (u, b, P, ¢) with ¢ = (c1,...,¢r) such that for
1<i<I:
—Au+ (curlw) x u+ VP — (curlb) xd=f and divu=~h inQ,

curlcurlb — curl(u xd)=¢g and divb=0 inQ,
uxn=0 and bxn=0 onT, (4.2)
P=P onlyg and P = Fy+¢ only,
(w-n,L)p, =0, and (b-n,L)p, =0.

The aim of this section is to show, under minimal regularity assumptions on f, g, h and P, the existence and
the uniqueness of weak solutions (u, b, P,c) in H*(Q) x H*(Q) x L*(Q) x R!. Classically, the idea is to write an
equivalent variational formulation and use Lax Milgram if the bilinear form involved in the variational formulation

is coercive. It is natural to look for a solution (u,b) in V 5 (Q2) x V 5(Q) with
VnQ) :={ve H(Q);dive=0inQ, vxn=0onl, (v-n,1)p, =0, V1 <i<I}.

Unlike the case of Dirichlet type boundary conditions, the space H 71((2) is not suitable for source terms in
the right hand side to find solutions in Hl(Q) Let us analyse the case of f, it holds true also for g. Since
v € V5(9), then we can firstly consider the duality pairing (f, v>[Hg'Z(curl,Q)]’XHg’z(curl,Q) in view to write an
equivalent variational formulation. Then, we must suppose that f belongs to [H g’z(curl,ﬂ)]’ . But, we have
v belongs to H'(Q) < L°(Q). Then, the previous hypothesis on f can be weakened by considering the space
[H 8’2(cur1, Q)]” which is a subspace of H™*(Q). Indeed, thanks to the characterization given in Proposition 3.1,

we have for r = 6 and p = 2,
[HS?(curl, Q)] = {F + curle; F e LY°(Q), ¢ € L*(Q)}. (4.3)

Then, since V n () — Hg’Z(curl, Q), the previous duality is replaced by

(f v>[Hg’z(curl,Q)]’><Hg'2(cur1,52) = /QF ‘vde +/Q¢ -curlv de.

In the sequel, we will consider the space [H§”(curl, Q)] for f and g to obtain solutions in H™(£).

Proposition 4.1. Let us suppose h = 0. Let f,g € [Hg’2(curl, Q)] and Py € H’%(F) with the compatibility
conditions
Vo e K3(Q), (9,v)q,, =0, (4.4)

divg=0 onQ, (4.5)
where (-,-)q, , denotes the duality product between [H{?(curl, Q)] and H?(curl, Q).
Then the following two problems are equivalent:
(i) Find (u,b, P,c) € H'(Q) x H*(Q) x L*(Q) x R! solution of (4.2).
(ii) Find (u,b) € Vn(Q) x V() and ¢ € R! such that: for all (v,¥) € VN(Q) x V §(Q)

/curlu-curlvda:—i—/(curlw)Xu-vdw—/(curlb)xd~vdm+/curlb-curl\Ildx
Q Q Q Q

1
+ / (curl¥) x d-udz = (f,v)a,, + (9. ¥)a,, — (Po,v - n)r, — Z(P() +ci,v-n)r, (4.6)
o :

=1
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and ¢ = (c1,--- ,cr) satisfying for 1 << I:

e =(£,Va ), — (P, Ve -n)r */

(curlw) x w- Vg, dx + / (curld) x d - Vg dz, (4.7)
Q

Q

where (-, -)r denotes the duality product between H™Y/*(T') and H/*(T').

Proof. Using the same arguments as in [6, Lemma 5.5], we can prove that D, () x D(Q) is dense in the space
E(Q) ={(u, P) € HL(Q) x L*(Q); Au+ VP € [H*(curl, Q)]'}.

Moreover, we have the following Green formula: For any (u, P) € £(Q) and ¢ € H}(Q) with o x n =0 on T":

(~Au+VP g 6 = / curlu - curlpdz + (P, ¢ - n)r. (4.8)
’ Q

Using Green formula (4.8), we deduce that any (u,b, P,c) € H' () x H'(Q) x L*(Q) x R! satisfying (4.2) also
solves (4.6). Tt remains to recover the relation (4.7). Let us take v € H:(Q) with v x m = 0 on T and set:

I
Vo=V~ Z<’U -n, 1)r, Vg (4.9)

=1

Observe that vy € H}T(Q), vo x m = 0 on I' and due to the properties of ¢, we have for all 1 < i < I,
(vo-m, 1)r, = 0. Then vy belongs to V (). Multiplying the first equation on the left of the problem (4.2) with
v=1uvy+ 21-121(1) -, 1)r,VgY, integrating by parts in €, we obtain

/curlu~curl’vdx+/(curlw)Xu-vdm—/(curlb)><d~'uda:—(f,v>n—|—(Po,'U~n>ro
Q Q Q
I

+Z<PO+Ci,U'n>Fi =/

i=1 @

curlwu - curlvgdz + /

(curlw) X u - vo dx f/(curlb) x d-vodx
Q

Q
I

—(f,vo)a + (Po,vo - n)r, + Z(Po +¢i,vo - M), + Z(v -m, 1)r, [/

(curlw) x u - Vg dm]
i=1 i=1 Q

I

# 3w mbe [~

I
(curlb) x d- Vg, dz — (£, Vg Yo + (Po,Vai n)p] + Zci (v-m,)r, =0
i=1 Q

=1

Comparing with the variational formulation (4.6) for the test function (vo,0), we obtain for all 1 <i < I:

! I
Za‘ (v-m,1)p, :Z<U'n»1>1“i[—/

(curlw) x u - Vg dz + / (curlb) x d - V¢l dz
i=1 Q2

Q

+ (£, Val)a = (o, Val -m)r]
Finally, taking v = quy, due to the properties of ¢/ in (3.2), we obtain the relation (4.7) for all 1 < j < I.

Conversely, let (u,b) € V n(2) X V x(Q2) be a solution of (4.6) and ¢ = (c1,- -, cr) satisfying (4.7). We want to show it
implies (7). We note that D, () is not a subspace of V 5 (£2), so it is not possible to prove directly that (4.6)-(4.7) implies
(7). In particular, we can not apply the De Rham’s lemma to recover the pressure. As a consequence, we need to extend
(4.6) for all divergence free functions (v, ¥) € X n(Q) x X n(Q2). For this purpose, let (v, ®) € X n(Q) x X n(Q2) and we
consider the decomposition (4.9) for v to obtain vo € V 5 (). Similarly, we set

I
Wy =¥ - (¥-n,1)r, Vg, (4.10)

i=1
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which implies that W is a function of V 5(Q2). Replacing in (4.6), we obtain:

/curlu~curlvdz+/(curlw)Xu-vdxf/(curlb) ><d~vda:+/curlb-curl\11dx
Q Q Q Q

I
(curl W) x d-udz — (f,v)a — (g, ¥)o + (Po,v - n)r, + Z<P0 +ci,v-n)r,

i=1

+

S~

I
:Z(v-n,l)ri[—/(curlb) ><d~tiNda:+/(curlw) ><u-quVdac—<f,quN)Q+<P0,Vq1N-n)F}
i=1 @ Q2

=—c;
I I

+> (w-n e+ (¥-n,1)r,(9, Vg e,

i=1 i=1

where we have used the fact that for all 1 < i < I: ZJI':1 cj (Vg - n, I)r; = ¢i. Note that the compatibility condition

<1<
(4.4) implies that (g, V¢N)a = 0 for all 1 < ¢ < I. Thus, the right hand side of the above relation is equal to zero and
then for any (v, ¥) € X n(Q2) x X n(€2), we have

/curlu~curlvdw+/(curlw)><u~vdx—/(curlb)Xd-vdm—i—/curlb-curl\lldaz
Q Q Q Q
I

+/Q(cur1\Il) xd-udr=(f,v)a+ (g, ¥)o— (Po,v n)r, — Z(PO +¢i,v-n)r,. (4.11)

i=1

That means that problem (4.11) and (4.6) are equivalent. So, in the sequel, we will prove that problem (4.11) implies (7).
Choosing (v,0) with v € D, () as a test function in (4.11), we have
(=Au + (curlw) x u — (curld) x d — f,v)p/(q)xp() =0
So by De Rham’s theorem, there exists a distribution P € D’(Q), defined uniquely up to an additive constant such that
—Au+ (curlw) X u — (curlb) xd— f = —-VP in Q. (4.12)

Since w and b belong to H'(Q) — L%(Q), the terms (curlw) x u and (curlb) x d belong to Lg(Q) — H'(Q). As
f € [Hy?(curl, Q)] — H'(Q), we deduce that VP € H~'(Q2) and then P € L*(Q) with a trace in Hﬁé(F) (we refer
to [4]). Next, choosing (0, ¥) with ¥ € D,(Q2) in (4.11), we have

(curleurld — curl(u x d) — g, ¥) p (o) xp(0) = 0
Then, applying [20, Lemma 2.2|, we have x € L*(Q) defined uniquely up to an additive constant such that
curlcurlb — curl(u xd) —g=Vyx inQ and x=0 onTl

We note that the trace of x is well defined and belongs to Hil/Q(F). Taking the divergence of the above equation, the

function y is solution of the harmonic problem
Ax=0 inQ and x=0 onl.

So, we deduce that x = 0 in Q which gives the second equation in (4.2). Moreover, by the fact that w and b belong to the
space Vn(§2), we have divu =divb=0inQanduxn=bxn=0onT.

It remains to show the boundary conditions on the pressure. Multiplying equation (4.12) by v € X n(Q2), using the
decomposition (4.9) and integrating on €2, we obtain

/ curlu - curlvg dz + / (curlw) x u - vodx — / (curld) x d-vodz — (f,vo)a + (P,vo - n)r
) Q

Q
I

= Z(v-m r, [— /(curlw) xu- Vg da:—i—/(curlb) xd-Vq dz+ (f, Vg )o — (P, Vg -n)r]
i=1 Q2

Q
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Taking (v, 0) test function in (4.6), we have:

/ curlwu - curlvodr + / (curlw) X u - vodx f/(curlb) x d-vodr — (f,vo)a + (Po,vo - n)r,
Q Q Q
1 1
F3 R+ envo e, = S (o en e[~ [
i=1 i=1 Q2
1
+H(F Ve o — (Po, Vg n)r, — > (Po+¢;, Vg -n>r1}

Jj=1

(curlw) x u- Vg dx + / (curld) x d - Vg dx
Q

Substracting both equations and using again the decomposition (4.9), we obtain:

I
<P7 Vo - TL>F + Z<U ' n, 1>F7 <Pv quN . ’I’L>[‘

1=1

(Pv-n)r

I I I
= (Po,vo - m)rg + > _(Po+ ci,v0 - mhr, + (v n, ), [ (Po, Val¥ - mirg + Y (Po+ ¢, Val¥ -, |

i=1 i=1 j=1

(Po,wo-m)r+ec; 14 (vo-n,Lr,; (Po,VgN -n)p+c;

Since (vo -m,1)r, =0, 1< i< I, we have

I I
<P,’l) 'n>F = <P07U 'TL>1“ +Z<C¢,’U n>F1 = <P0,’U 'TL>1“0 +Z<P0 +ci,v- n>I‘,;
i=1 i=1
Next, the argmument to deduce that P = Py on I'g and P = Py + ¢; on I'; is very similar to that of |7, Proposition 3.7],

hence we omit it. O

Remark 4.1. (i) Note that the compatibility condition (4.4) is necessary. Indeed, if we choose v = 0 and
P = Vg in (4.6), we have (g, quv>96.2 =0, 1 <4 <1I. Observe that since Q is of class C', the functions
qN belong to H*(Q) and then the vectors VN belong to Hy” (curl, Q). From the characterization (4.3), this

N

condition is actually written as fQF Vg 'de =0,1 <4< 1. Inthe case where 1 is simply connected, the

compatibility condition (4.4) is not necessary to solve (4.2) because the kernel K3 (Q) = {0}.

(ii) If g is the curl of an element € € L*(Q), then g is still an element of [Hg’Q(curl,Q)]', Moreover, since
divg = 0 in Q, it always satisfies the compatibility condition (4.4).

We now prove the solvability of the problem (4.6).

Theorem 4.2. Let ) be C' and we suppose h = 0. Let
f.g€[HY (curl, Q)] and Py H 3(T)

with the compatibility conditions (4.4)-(4.5). Then the problem (4.2) has a unique weak solution (u,b, P, c) €
H'(Q) x H*(Q) x L*() x R! which satisfies the estimates:

Hu”Hl(Q) + Hb”Hl(Q) < C(Hf”[Hg’Q(cur],Q)]/ + HgH[Hg’z(cur]’Q)]’ + HPOHH—%(F)) (4~13)

1Pl 2y < OO+ leurlwll gz gy + 1l 0) 081 228 2 et 190 515 2 curtny + 10— ) (4.14)

Moreover, if Q is C*', f,g € L%%(Q) and P, € WY/%5/5(T), then (u,b, P) € Wz’g(ﬂ) X WQ’g(Q) X Wl’g(Q) and we

have the following estimate:

Hu||w2~6/5(ﬂ) + HbHW2a6/5(Q) + ||P||W1’5/5(Q) <O+ chrlw|lL3/2(Q) + Hd||L3(Q)) (4.15)

X (||f“L6/5(Q) + Hg||L6/5(Q) + HPOHWI/G,G/S(F))
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Proof. We know, according to Proposition 4.1, that the linearized problem (4.2) is equivalent to (4.6)-(4.7). The
existence and uniqueness of weak solution (u,b) € H'(Q) x H'(Q) follow from Lax-Milgram theorem. Let us
define the bilinear continuous forms a : Zn(2) x Zn(2) = R and a4 : Zn(Q2) X Zn(22) — R as follows:

a((u,b), (v, ®)) = /

Q

aw.da((u,b), (v, ®)) = /

Q

curlu - curlvdz + / curlb - curl ¥ dx
@ (4.16)

(curlw)xu-vdm—i—/(curl'll)xd~ud:v—/(curlb)><d~'vdw
Q Q

where Z 5 (02) = Vn(22) x Vn(Q) equipped with the product norm

2 2 2
(v, ¥z = lVlE ) + 1¥E @ - (4.17)
Next, we introduce the linear form £ : Z 5 (2) — R defined as follows

I
L(v,®) = (f,v)q,, + (9, P)q,, — (Po.v-n)r, — Y (Po+civ-n)r,

=1

So, the variational formulation (4.6) can be rewritten as: for any (v, ®) € Zn(Q)
A((u, b), (v, ¥)) = a((u,b), (v, ¥)) + aw a((u,b), (v, ¥)) = L(v, ¥) (4.18)

Since ((curlw) x u) - w = 0, then we have a, q4((u,b), (u,b)) =0 for all (u,b) € Zx(Q).

Since v and ¥ belong to Vx(€2), we have from [6, Corollary 3.2.| that the application v — [lcurlv||z2q,
(respectively ¥  [lcurl ¥| 2 ) is a norm on V' x(€2) equivalent to the norm ||v|| g1 g, (respectively [[¥|| 1))
As a consequence,

A((u,b), (v, ®)) = |a((v, ®), (v, ®))| = [leurlv]| 72, + [leurl ¥|| 72 g,
92 (4.19)
> 2o 0. 97, 0
P

where Cp is the constant given in (3.6). This shows that the bilinear form A(-, -) is coercive on Z n(€2). Moreover,
applying Cauchy-Schwarz inequality, we have:
la((u,b), (v, ¥))| < ||curlu’||L2(Q) ||Curlv||L2(Q) + ||curlb||L2(Q) ||CU1“1‘I’HL2(Q)
< COllw, )z, (o) 10, ®)l 2, (0 (4.20)
Now, using Holder inequality, we have
|@w,a((u, b)7(”7‘11))| < chrleL%(Q)
+  leurldllpz g lldll La o) 1V Lo

el s o) 0]l Loy + lleurl |2 o) [[wll Lo (o) @l L3 (o)

Now, using again the equivalence of norms |||y, () and [|-||g1(q), we obtain for C1 > 0 the constant of the embedding
H'(Q) — L5(Q)

|aw,a((u,b), (v, ®))| < (CF leurlwl] g o+ Cilidllzsg)) I B)llzy (@) 1(0: B)llzy (0 (4.21)
From (4.20) and (4.21), we can deduce that the form A(:,-) is continuous. Using similar arguments, we can verify that
the right hand side of (4.18) defines an element in the dual space of Z (). Thus, by Lax-Milgram lemma, there exists
a unique (u,b) € Z N () satisfying (4.18). So, due to Theorem 3.1, we obtain the existence of a unique weak solution
(u,b) € H*(Q) x H*(Q). Using (4.19), the variational formulation and trace theorem, we obtain the estimate (4.13). The

existence of the pressure follows from De Rham’s theorem. Moreover for the pressure estimate, we can write
||P||L2(Q) <C ||VP||H*1(Q) SC( ||‘fHH*1(Q)+HAuHH*1(Q)+H(curlw) X uHH,l(Q)—l-H(curl b) x dHHfl(Q) )

We know that || f|| g—1q) < C Hj"||[H5,2(curl o) and Al 1) < C l|[u]l g1 (- For the two remaining terms, we proceed
o ,
as follows

[| (curlw) x uHHfl(Q) < C|(curlw) x u||L6/5(Q) <C HCUTIWHL3/2(Q) HUHLG(Q) )
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so, we have

[(curlw) x ul| -1 (q) < CC|lcurlwl|ps/2 ) [ull g1 (q) -
Proceeding similarly, we get

[[(curlb) x dHH—l(Q) <C HdHL3(Q) Hb”Hl(Q)

Hence, using the above estimates together with the estimate (4.13), we deduce the pressure estimate (4.14).
Now, if £,g € L5(Q) and Py € W/%5/5(T"), then we already know that (u, b, P) € H'(Q) x H'(Q) x L2(Q) is solution of
(4.2). We deduce that (curlw) x u+ (curlb) x d belongs to L%/°(£2). Similarly, we have curl(u x d) = (d-V)u — (u-V)d
belongs to L%°(€2). Observe that (u, P,c) is solution of the following Stokes problem

—Au+VP=F and divu=0 in Q,
uxXxn=0 onl' and P=PF only, P=PFPy+c¢ onl},
(u-n,l)r, =0, V1<i<lI,

with F = f — (curlw) x u + (curlb) x d in L%°(Q). Thanks to the regularity of Stokes problem (Sx-) (see Proposition
3.2), (u, P) belongs to W2%/°(Q) x W%/°(Q) with the corresponding estimate. Next, since b is a solution of the following
elliptic problem

curlcurlb=G and divb=0 in (,
bxn=0 onl,

(b-m,1)p, =0, VI<i<I,

with G = g + curl(u x d) in L%°(9) satisfying the compatibility conditions (4.4)-(4.5), we deduce from Theorem 3.3 that
b belongs to W25/5(Q). The estimate (4.15) then follows from the regularity estimates of the above Stokes problem on
(u, P) and elliptic problem on b. O

5 The linearized MHD system: LP-theory

After the study of weak solutions in the case of Hilbert spaces, we are interested in the study of weak and
strong solutions in LP-theory for the linearized system (4.2). We begin by studying strong solutions. If p > 6/5,
it follows that LP(Q) — L5°(Q), W1-¥/p»(I') — W1/6.6/5("). Then, due to Theorem 4.2, we have (u,b) €
W2%/5(Q) x W25/5(Q). In the next subsection we will prove that this solution belongs to W2?() x W2P((Q)
for any p > 6/5.

5.1 Strong solution in W *?(Q) with p > 6/5

The aim of this section is to give an answer to the question of the existence of a regular solution (u,b, P) €
W2P(Q) x WHP(Q) x WHP(Q) for the linearized MHD problem (4.2). When p < 3, we have the embedding
W2P(Q) < W' (Q) with = = 1 — 1 Then, supposing d € W "*?(Q) — L*(Q) implies that the term
(curld) x d belongs to LP(Q). If p < 3/2, WP (Q) — LP (Q) with p% = z% — % and then supposing
curlw € L3?(Q) implies that the term (curl w) x u belongs to LP(Q). So, we can use the well-known regularity
of the Stokes problem (Sy-) in order to prove the regularity W7 (Q) x W?(Q) with p < 3/2 for (u, P) since the
right hand side f—(curl w)xu+(curlb) x d belongs to LP(Q2). Similarly, the term curl(uxd) = (d-V)u—(u-V)d
belongs to LP(€) and we can use the regularity of the elliptic problem (Ey) to prove the regularity WP () with
p < 3/2 for b. Now, if 3/2 < p < 3, the terms (curld) x d and (d - V)u still belong to L?(£2) but the situation
is different for the terms (curlw) x w and (u - V)d if curlw and Vd belong only to L*%(). Indeed, we must
suppose curlw € L*(Q) and Vd € L*(Q) with
3

3 3 3 3
— _ 'f — — .f = — = .f -.
s 5 1p<2, 5>2 if p 5 and s=2p 1p>2
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Now, if p > 3, the problem arises for the terms (curlb) x d and (d - V)u if we suppose only d in L*(Q). So,
we must suppose that d € LS’(Q) with

=3 ifp<3, §>3 ifp=3 and s =p ifp>3.
So, to conserve the assumptions curlw € L32(Q2) and d € W%/2(Q) and prove strong solutions (u, b, P) in
W2P(Q) x W2P(Q) x WhP(Q), we first assume that w and d are more regular and belong to D(Q). We will

then prove a priori estimates allowing to remove this latter regularity. We refer to [5, Theorem 2.4] for a similar

proof for the Oseen problem. The details are given in the following regularity result in a solenoidal framework.
Theorem 5.1. Let Q be C*' and p > 6/5. Assume that h =0, and let f,g, w, d and Py satisfying (4.5),
feLPQ), ge LP(Q), curlw € L¥?(Q), d € W232(Q), and Py € W' #?(I)

with the compatibility condition

VUEK:?\;(Q), /g~'vd:13:0. (5.1)

Q

Then, the weak solution (u,b, P) of the problem (4.2) given by Theorem /.2 belongs to WP (Q) x W2P(Q) x
WLP(Q) which also satisfies the estimate:

[ullwzr ) + [Blwzr ) + [1Plwirg) < C(1 + [[curlw]] + lid]l

)

L3 () Wl‘%(Q))

(5.2)

< (Il () + 19l o) + HPOHWl_%’p(F)

Proof. We prove it in two steps:
First step: We consider the case of w € D(Q) and d € D, (). We know that for all p > 6/5 we have

LP(Q) — L5°(Q) and W'~VPP(I) < HY?(T).
Thanks to Theorem 4.2, there exists a unique solution (u, b, P, ¢) € w23 (Q) x w23 (Q) x W5 (Q) x RY verifying
the estimates (4.13)-(4.14).
Since u € WQ%(Q) < L%(Q) and curlb € ng(Q) — L*(Q) , it follows that (curlw) x u € L%(Q) and
(curlb) x d € L*(Q). Note that L*(Q) < L?(Q) if p < 2, then we have three cases:
Case ¢ < p < 2: Since f—(curlw)xu+(curlb)xd € L?((2), thanks to the existence of strong solutions for Stokes
equations (see Theorem 3.2), we have that (u, P) € W 2P(Q2) x W ?(Q). Moreover, we have g + curl(u x d) €
LP(Q). Thanks to the regularity of elliptic problem (see Theorem 3.3), we have that b € W 2(Q).
Case 2 < p < 6: From the previous case, (u,b, P) € H*(Q) x H*(Q) x H'(Q). Since

H?*(Q) — W5(Q) — L™(Q),
then (curlw) xu € L (Q) and (curlb) x d € L°(Q). Hence we hava that f —curlw x u+ (curlb) xd € L?(Q).
Again, by Theorem 3.2, it follows that (u, P) € WP (Q) x W1P(Q). Moreover, we have that g 4+ curl(u x d) €
L°(Q). Thanks to Theorem 3.3, we have that b € W27 (Q).
Case p > 6: We know that (u,b, P) € W>%(Q) x W>%(Q) x W6(Q). Since
W25(Q) - Wh>(Q)
then (curlw) x u € LY(Q), (curld) x d € LY(Q) and curl(u x d) € LI(Q) for any ¢ > 1. Again, according to
the regularity of Stokes and elliptic problems, we have (u,b, P) € W*P(Q) x W*P(Q) x WP(Q) and we have
the following estimate:
Hu”WZvP(Q) + ||b||W2»P(Q) + ||P||W1>P(Q)

< Csp ( 1Fllzo o) + [(eurlw) X w1 q) + [l(curl ) x dlps (o) + [ Foll -2, 1 (53)

I
+ 3" 1l + 19l ooy + el x d)ll o) ),

i=1
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where C, = max(C,,C},) with C the constant given in (3.9) and C, the constant given in (3.19).

To prove the estimate (5.2), we must bound the terms || (curlw) X | s (o), [[(curld) x d|| 1, (), [curl(u x d)|| 1 o)
and Zle |ci| in the right hand side of (5.3).

For this, let € > 0 and p. /2 the classical mollifier. We consider y = cm and d the extensions by 0 of y and d
to R3, respectively. We decompose curl w and d:

—~

curlw =y + y5 where yi =curlw*p. o, and y5 = curlw — yg, (5.4)

d=dS+d5 where di =d*p.s (5.5)

(i) Estimate of the term |[|(curlw) X ||y, q). First, we look for the estimate depending on y5. Observe that
W2P(Q) — L™(Q) with
1 1 2 3s

€[l,00[if p=3/2 and m=oc0 if p>3/2.
Using the Holder inequality and Sobolev embedding, we have

lys x u“LP(Q) < ||y§HLS(Q) HUHL’"(Q) < C||3/§||LS(Q) ||u||W2»P(Q)

where % = % + % and s the real number defined as:
3 3 3 3
s=3 ifp<§, s>§ ifpzi and s=p ifp>§. (5.6)

Moreover, we have

<e.
L3 (Q)

5]

—_~— ‘

LoQ) = chrlw —curlw * p. /o

Then, it follows that

Y3 X ull o) < Cellullyrzn ) - (5.7)

To get the estimate depending on y$§, we consider two steps (similar to [7, Theorem 3.5]):

e Case { <p < 6: there exists ¢ € [3, 00 such that % = 1+ . By Hélder inequality, we have

1
q
[yt x ull o) < Wil Lo lullLe@) -
Let ¢t € [1, 3] such that 1 + % =2 4+ 1, we obtain
Il oy < lewrlwl g o ol oy Il ooy < Celenrlwl g o ooy
where C. is the constant absorbing the norm of the mollifier. Since H'(Q) < L%(Q), it follows from (4.13) that

lly1 x u”LP(Q) < G20 chrleL%(Q)( ||f||[Hg’2(cur17Q)]/ + ||g||[H8*2(cur17Q)]/ + HPOHH—%(F) )7

where Cy is the constant of the Sobolev embedding H*(Q) < L°(Q). Since, p > %, we deduce that
I35 % wlgaqe < CC lewrtawl g o (1o + gl + IRl s ) (5.5)

where Cs is a constant which depends on Cy, LP(Q) < [H{(curl, Q)] and Wlfi’p(l“) — H~2(T).
e Case p > 6: we know that the embedding

WP (Q) — Wh™(Q),
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is compact for any m € [1,p*[ if p < 3, for any m € [1, oo[ if p = 3 and for m € [1,00] if p > 3.
We choose the exponent m such that 6 < m < +o00. So, we have:

WP(Q) — W"™(Q) < L%Q).

compact continuous

Hence, for any ¢’ > 0, we know that there exists a constant C./ such that the following interpolation inequality
holds:

[ullyrm ) < € lullwarq) + Ce lull g q) (5.9)

For ¢ > 2 such that 1+%=§+%,wehave
Y1 x ull o) < CllYillpe ) [wllw 1m @
<C ||cur1w||L%(Q) Hpe/QHLt(]RB) wllyy 1.m () -
Using (5.9), we obtain
ly1 x ull gy < COflewrlw] g o (" [ullwen i) + O ] g o)) (5.10)
Thus, choosing ¢’ > 0 small enough, we can deduce from (5.8) or (5.10) that
lyl x ullpr ) < CC: ||cur1'w||L%(Q) (¢’ [ullyw2e o) + Co llullgro))- (5.11)

(ii) Estimate of the term |[|(curld) x d| ;s . Using the decomposition (5.5), as previously, we have for the

part d3:

1ds|

<e (5.12)

L@ S Hd_d*p€/2’ L@ ~

3
f)pifp<3,foranyk€[1,oo[ifp:3andk::ooifp>3.

Recall that W 2P (Q) < W *(Q) for k = p* = 3
Using the Holder inequality and (5.12), we have

I(eurlb) x dll o < lewrlb] o, sl o) < Ce lbllyano (5.13)
where % =1+ 2 for s’ given by:
=3 ifp<3, >3 ifp=3 and s =p ifp>3. (5.14)

It remains to prove the estimate depending on dj. We have three cases:

e Case p < 2: Using the Holder inequality, we have
[[(curlb) x di”LP(Q) < ”di”Lk‘(Q) [curlbl| 2 g,
where % =+ + 3. Let t € [1, 3/2] such that 1 + } = § + }, we obtain (since r > 3)

I(curlb) x di | psq) < dllLsy [loe/2]l Lo gs) lleurlbll gz g,

< Celldl|ps ) Bl g (@) -

(5.15)

where Cj is a constant which depends on LP(Q) < [H{?(curl, Q)] and Wl_%’p(I‘) — H™2(I).
e Case 2 < p < 3: Assuming 2 < ¢ < p*, from the relation

W2P(Q) — WY (Q) < HYQ)

compact continuous

we have for any € > 0, there exists a constant C, such that

1Bl w0y < & Blw=m ) + Cor 1Bl 10 (5.16)
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Let k be defined by % = % + % and ¢t > 1 defined by 1+ % = % + % Thus, since k& > 3, the following estimate
holds:

[(curlb) x deHLT’(Q) Hd€||Lk(Q) chrlan‘l(Q) < HdHL3(§2) HpE/QHLt(]Rd) chrleLq(Q
Next using (5.16) yields,
[[(curld) x diHLl’(Q) < Ce HdHL3(Q) (¢ ||bHW2vP(Q) + Ceo ||bHH1(Q))~ (5.17)

e Case p > 3: For % = L + L with s’ defined in (5.14), we have

p*

I (urlb) x ds | oy < 14511 g lourlbl e
Let t be defined by 1 + % = % + % Thus, using (5.16) with ¢ = p*, we obtain:

I(eurlb) x d5 50 < Celldl e (&' 1Bl @) + Co 16220 (5.18)
Choosing € > 0 small enough, we deduce from (5.15), (5.17) or (5.18) that

I(eurlb) x d5 s 0 < Celldl s (&' 1Bl @) + Co 1610 (5.19)

(iii) Estimate of the term |curl(u x d)||1, ). Note that, since div w =0 and divd =0

curl(u xd)=d-Vu —u-Vd.

e The term [|d- Vu/[1, . Using the decomposition (5.5) and exactly the same analysis as in (ii) for the term
(curld) x d with curl b replaced by Vu, we obtain the following estimates:

lds - VUHLP(Q) HV“HLk(Q) 1d5| L' (Q) < Ce HUHWM(Q) J (5.20)
where s is defined in (5.14) and
[[d - VU’HLP(Q) < Ce ||d||L3(Q) (¢ ”’U’HWZP(Q) + Co ||uHH1(Q))' (5.21)

e The term |[u - Vd|| ;. The analysis is similar to the case (i). We consider:
Vd = 2§ + 25 where 2= Vd pes2  and z5=Vd-— Vd x Pe/2 (5.22)

Vd is the extension by zero of Vd to R3. Observe that

Lo@) S [Vd = Vd = p s

[|25] L (@) S €

with s given in (5.6). Using the above estimates and the same arguments as in the case (i), the influence of 2§

in the bound of [ju - Vd| 1, g, is given by:
- 25l o) < Cllzallps ) lellpm @) < Cellullyzaq) - (5.23)
And for the bound depending on z§, proceeding in the same way as in the case (i), we derive:
128 -l oy < CONAl Ly g & Tllwanay + Cor Tl g ) (5.24)
(iv) Estimate of the constants Zle |ci|. We note that
el <1 [ £-9a dal+| [ (curlbx a)- Vol da|+| [ (eurlw x w)- V) da| +| [ Pl o]

<IFIl e

N
L@ H @ LG(Q)"‘HCUFIbHL?(Q) ldll 23 q) Hv‘h’ LS(Q)

+ ||curlw|| 3

S LIS | 2R

N
HuHLG(Q) qul L6(Q) " 2(F) HH%(F)

L3 Q)
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Thanks to [24, Corollary 3.3.1], we know that the functions Vq.* belong to W »%(Q) for any ¢ > 2 where each ¢ is the
unique solution of the problem (3.2).

Now, the estimate (4.13) yields:
I
S leil € OO+ el g0y + lemelwl g )1 lzoco + Iy + IBSIL sy ) (5.25)

i=1 Q) ™)

Using the embeddings
W) = L3(Q), LP(Q) = [HS?(curl,Q)], W' 5" (I') = H 3 (T),

choosing € and €' such that

1
<O Celllenrlwll o ) + 1l s ) < 51

we deduce from (5.7),(5.11), (5.15), (5.19)-(5.21), (5.23)-(5.25), the weak estimate (4.13) and the embedding ng(ﬂ) —
L3(Q) that the estimate (5.2) holds in all cases.

Second step: The case of curlw € L%?(Q) and d € W3/ ().
Let wy € D(Q) and dy € D(Q) such that curlwy — curlw in L¥?(Q) and dy — d in W3/2(Q).
Consequently, the following problem:
— Auy + (curlwy) X uy + VP — (curlby) xdyx = f and divuy=0 inQ,
curlcurlby — curl(uy xdy) =g and divby=0 inQ,
uyxn=0 and byxn=0 onl,
Px=F only and Py=Fy+c¢ only,
(ur-m,L)r, =0, and (bx-n,1)r, =0, 1<i<].

has a unique solution (uy, by, Px,cx) € W 2P(Q) x W2P(Q) x W P(Q) x RT and satisfies:

)

Hu)\szvP(Q) + Hb)\szm(Q) + HPA”WLP(Q) <O+ HCUI'IwAHL%(Q) + Hd)\HWl,%(Q) (5.26)

X (”fHLP(Q) + HgHLp(Q) + ”PO”WF%”’(F) )7
where C is independent of A. Finally, these uniform bounds enable us to pass to the limit A — 0. As a consequence,
(wx, by, Py, cx) converges to (u, b, P, ¢) the solution of the linearized MHD problem (4.2) and satisfies the estimate (5.2). O

5.2 Weak solution in W'?(Q) with 1 < p < +oo

In this subsection, we study the regularity W '*?(Q) of the weak solution for the linearized MHD problem (4.2).
We begin with the case p > 2. The next theorem will be improved in Corollary 5.10 where we consider a data Py

less regular.
In the following, we denote by (-,-)q, the duality product between [H”(curl, 2)]" and Hy"(curl, Q).

Theorem 5.2. (Generalized solution in W P(Q) with p > 2). Suppose that Q is of class C' and p > 2.
Assume that h =0, and let f,g € [Hy " (curl,Q)]" and Py € W=+ (T) with the compatibility condition

Vo e K2(Q), (9.v)a, , =0, (5.27)
divg=0 inf. (5.28)

and
curlw € L¥(Q), d € WL*(Q), (5.29)

with

3 3
s=3 if 2<p<3, §> 5 ifp=3 and s=r if p>3. (5.30)
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1
r>1 such that —=—+4_. (5.31)
r p

Then the linearized MHD problem (4.2) has a unique solution (u,b, P,c) € WP (Q) x WHP(Q) x W (Q) x RY.
Moreover, we have the following estimate:

HuHWLP(Q) + Hb|‘W1,p(sz) + ||P||W1,r(sz) < C(l + chrleLs(gz) + ||d||wl,s(9))
(5.32)
x ( H‘fH[HSI’p/(curl,Q)]/ + ||g||[HS/’p/(curl,Q)]/ + ||P0||W1*1/7"7'(F) )

Proof. A) Existence: Applying Proposition 3.2, there exists a unique solution (uy, P,a™) € W'P(Q) x
WLr(Q) x R solution of the following problem:

—Au;+ VP =f and divu; =0 in Q,

uy Xxn=0 onl,

Pp=Py onTy, PL=Py+a” onTy

(uy -m, 1), =0, V1 <i <1

where agl) ={f,Va¥)q — / PyVqY - ndo and satisfying the estimate:
r

! p!

Il + 1P lwrr) < CO1F gz curr e + IPolls- 1y )- (5.33)

Next, since g satisfies the compatibility conditions (5.27)-(5.28), due to Lemma 3.4, the following problem:

—Ab; =g and divb; =0 in Q,
by xn=0 onl,

<b1 "I’L,1>Fi =0 V1 ézgl
has a unique solution b; € W*(Q) satisfying the estimate:

||b1||W1’p(Q) < C HgH[HS/'p/(Curl,Q)]’ (534)
Then, since curlw € L*(Q) and w; € W'P(Q), we have (curlw) x u; € L"(Q). Indeed, if p < 3, then

WP(Q) = [P*(Q) with L =1 _Land 14 L =1 Ifp =3, then there exists ¢ > 0 such that +L =2
px P 3 s px T c px 3

3
Finally, if p > 3, then px = co and r = s. Next, since s > 2, then W"*(Q) — L*(Q) so d € L3(2§2), and by the
definition of r in (5.31), we have (curlb;) x d € L"(Q2). Then f; = —(curlw) x uy + (curld;) x d belongs to
L"(Q2). Furthermore, we set g; = curl(u; x d) = (d-V)u; — (u; - V)d. By the same way, using the definitions of
s and r, we can check that g, € L" (). Moreover, g, satisfies the compatibility conditions (5.27)-(5.28). Observe
that with the values of s given in (5.30) for p > 2, we have r € [¢, 3) and satisfies

5 s>§ ifr:§ and s=r ifr>§. (5.35)

s 3 'f6<r<
= - 17 —
5 2’ 2 2 2

2

So, s > 2 and then curlw is at least in L%(Q) and d is at least in W32 (©). We deduce from Theorem 5.1 that
the following problem:
— Aug + (curlw) X ug + VP2 — (curlbs) x d = f; and divus =0 in
curlcurlb; — curl(us xd) =g; and divby =0 in Q,
ups Xxn=0 and by xn=0 onl, (5.36)
Po,=0 onIly and Py = a§2) on I';,
(ug-m,Dp, =0, and (bz-n,1)r, =0, 1<i<I.
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has a unique solution (ug, by, P, a®) € W27(Q) x W2"(Q) x W17 (Q) x R! satisfying the estimate:

Hu2||w2,r(9) + Hb2||w2,r(9) + HP2HW1YT(Q)

(5.37)
SOQ A fleurlwl] g o +lldllrg IUFiller@ + 19102 @)
with
o' = ((curl(by + b2)) x d, VgV Ve  — ((curlw) x (u1 + uz), Vg o (5.38)

r\p’ v\ p’

Finally, using the embedding W*"(Q) — W?'P(Q), the solution of the linearized MHD problem (4.2) is given by
(w1 + u2, by + ba, Py 4 P2, + a®) € WHP(Q) x WHP(Q) x W (Q) x RL.

)

In particular, the constants ¢; = agl) + 0‘52 are given by

¢ = <f,vq£V>QT,m, - /Fpovqgv -ndo + ((curlb) x d, vqf%r,’p, — ((curlw) X u, vqf%ﬂyp/. (5.39)

B) Estimates: The terms on f; and g, in (5.37) can be controlled as:
1£1llr 0y < Clleurlwll . g) 1wl gy + IdllLs o) 1B1lwrmq) )- (5.40)
lg1llzr i) < C(ldllLs o) vl + 1Vl L lwllwrng ) (5.41)

Then, using the above estimates and the embeddings W'*(Q) «— WI%(Q) — L*(Q) for s > 3/2, the estimate (5.37)

becomes

Hu2||w2v7'(ﬂ) + Hb2||w2=7'(9) + HPZHWLT(Q) < C(l + ||Curl’wHLs(Q) + ”d”WlsS(Q))

(5.42)
X (chrlw”LS(Q) + ||dHW1:S(Q) )(”ulHleP(Q) + Hblﬂwlm(g))-
Thanks to (5.33), (5.34) and (5.42), the solution (u, b, P) satisfies
2
”uHWl,p(n) + ||b||W1=P(Q) + ”P”WLT(Q) < C(l + chrleLs(m + Hduwhs(sz) ) (5.43)

X (H'fH[HS/‘p/(curl,Q)]’ + HgH[Hg/'p/(curl,Q)]’ + HPOHW1*1/7H7'(F) )

This estimate is not optimal and can be improved. For this, we will consider (u, b, P) € WP(Q) x W1P(Q) x Wh"(Q)
the solution of (4.2) obtained in the existence part.
Note that, due to the hypothesis on d and curlw, the terms (curlw) x u, (curld) x d and curl(u x d) belong to L"(2)
with 1 = % + %. Thus, according to the regularity of the Stokes problem (Sxr) (see Proposition 3.2) and the elliptic

problem (€x) (see Lemma 3.4), we have:

||uHW11P(Q) + ||b||W1-,p(Q) + HPHWLT(Q)

<O gz cumnnyy *+ 1905227 gy + 1Pl + Hcurlw) x wl oy (5.44)

+ ll(eurl b) x dil g, + llcurl(u x d)l|(q, )

We proceed in a way similar to the proof of the Theorem 5.1: we bound the three last terms of (5.44), using the

decomposition of curlw, d and Vd given in (5.4)-(5.5) and (5.22) respectively.

(i) The term |[[(curlw) X ul|,: Using the decomposition (5.4) for y = curlw, we obtain:

ly2 X ullpr ) < I¥2llps () 1ullpe o) < Cellullwrpg (5.45)

where WHP(Q) — L (©) with p% = % — % is p < 3, for p* = 23j3 if p=3and p* = oo if p > 3. Next, for the term

Y3 X u, let us consider the first the case p < 3. We have

ly1 x U’HL’"(Q) < Hyi”Lt(Q) ||u||Lm(Q) < Hy“L%(Q) Hp6/2HLk(Q) HuHLm(Q)
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with 2 =2+ L and 1+ } = 2+ 1. Choosing 6 < m < p*, the embedding W"?(Q2) < L™(Q) is compact. Following this
chmce we have ZSER 2+p[ and k €]1, 5p+6[ Then, for any €’ > 0, there exists C., > 0 such that
HuHLm(Q) < HuHleP(Q) + Cor HuHLG(Q) :

So, we deduce

I wlry < & Ce 5720 Il + CrCClyl g o Tl o (5.46)
where C. is the constant which absorbes the norm of the mollifier and C; is the constant of the Sobolev embedding
H'(Q) — L(Q). If p > 3, we have

ly1 x uHLT(Q) H%HLS(Q) ||“||Lm(§z) ||y||Ls(Q) HquHLl () HuHLm(Q) ) (5.47)

where we choose m = co if p > 3 and m € (1,00) if p = 3.
(ii) The term |[|(curld) x d|| ;) Using the decomposition (5.5) for d, we have:

[[(curld) x dal| ) <

Jeurlbl| o 5150y < Cellblly 00 (5.48)

Next, in order to bound the term (curlb) x df, we have two cases:

e The case 2 < p < 6: we have

[|(curld) x d§||LT(Q) < ”Curlb”L?(Q) Hdi”Lt(Q) < ||curleL2(Q) HdHLa(Q) HpE/QHLk(]R3)
< Celldllsq) 10l g1 o (5.49)

with % = % + % and 1+ % = % + i, so we have to take t = i—pp and k = ;Tpp which are well-defined.
e The case p > 6. We have:

[[(curld) x d€||Lr(Q) ||Cur1bHLq<Q) ||d€||Lf(Q) |CurleLq(Q) ||dHL3(Q) Hpé/QHLk(Rd) (5.50)

with % = é + % and 1+ % = % + % We choose 3 < ¢ < p, and then we have that ¢ €]3, p[ and k €]1, % . The
interpolation estimate of W9(Q) between H'(Q) and WP (Q) gives (cf. [19]):

||curleLq(Q) ||bHW1 () ||bHHl(Q) ’

with 0 = p (q 2) . Applying the Young inequality, we obtain for small ¢ > 0:

chr]b”LQ(Q) <€ Hb”Wle(Q) + Cer ||b||H1(Q) :
Replacing this estimate in (5.50), we obtain:
[|(curlb) x dEHLT(Q) ¢'Ce ||dHL3(Q) ||bHW1>P(Q) + Co Ce HdHL3(Q) ||bHH1(Q) . (5.51)

(iii) The term |[|curl(u x d)|| ;) Since divu = 0 and divd = 0 in €, thus we rewrite curl(u xd) = (d-V)u—(u-V)d.

e The term ||(d- V)u[;q): following the same proof as for the term (curlb) x d by replacing curlb with Vu, we obtain

1(ds - V)l gy < Celull o (5.52)
and
[[(d - V)U’HLT(Q) < Ce HdHLS(Q) (5/ ||uHW1‘IJ(Q) + Ce ||“HH1(Q)) (5.53)

e The term |[|(u - V)d||,,: In the same way, we remark that we can control this term as for [|(curlw) x u| .., by

replacing curl w with Vd. Applying the decomposition (5.22) for Vd, we thus prove that:
122 - wll L) < Cellullypg (5.54)
and
llz1 'u”L’V'(Q) < CCe ||Vd||L5(Q) (5, ||UHW1,p(Q) + Ce HuHHl(Q) ) (5.55)

Finally, taking the estimates (5.45)-(5.55) together with the embedding W'*(Q) — L3(Q) for s > 3/2 and (5.44), then
choosing €, ¢’ > 0 small enough and using the estimate (4.13), we thus obtain (5.32). O
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Remark 5.1.

(i) The case p > 2 can be analyzed in a similar way to the case p = 2 to prove that the space [Hg,’p,(curl,Q)}’
with % = % + % is optimal to obtain the regularity WP ().

(i) Why do we take Py € W'=Y/""(T') instead of W—Y/PP(T)? If we take Py € W~Y/PP(T'), we obtain that
P € LP(2) as in the classic case of Navier-Stokes equations with Dirichlet boundary conditions. But we are not
able to solve the Stokes problem (Syr) because, in this case, f = curl(curlu) + VP ¢ [H™ ¥ (curl, Q)]’.

We also need to study the case where the divergence is not free for the velocity field. The following problem
appears as the dual problem associated to the linearized MHD problem (4.2) in the study of weak solutions for
p<2:

—Au+ (curlw) X u+ VP — (curld) xd=f and divu=h inQ,
curlcurlb —curl(u xd)+Vxy =g and divb=0 inQ,
uxn=0 bxn=0 and x=0 on T, (5.56)
P=PFP only and P = Fy+c¢; onlTy,
(w-n,l)r, =0, and (b-n,1)p, =0.
Observe that the second equation in (4.2) is replaced by curlcurlb —curl(u x d)+ Vy =g in Q with y =0 on

I". The scalar x represents the Lagrange multiplier associated with magnetic divergence constraint. Note that,

taking the divergence in the above equation, x is a solution of the following Dirichlet problem:

Ax=divg inQ and x=0 onT. (5.57)
In particular, if g is divergence-free, we have x = 0. Nevertheless, the introduction of x will be useful to enforce
zero divergence condition over the magnetic field. First, we give the following result for the case h = 0.

Corollary 5.3. Suppose that p > 2 and h = 0. Let f,g € [Hgl’p,(curl,Q)}’, Py € W=+ (T) with the com-
patibility condition (5.27) and w, d defined with (5.29)-(5.31). Then the problem (5.56) has a unique solution
(u,b, P, x,c) € WHP(Q)x WHP(Q) x WL (Q) x WL (Q) x RT where ¢ = (cy, . .., ¢r) is given by (5.39). Moreover,
we have the following estimates:
||u‘|w1,p(9) + Hbﬂwlm(n) + ||P||W1,T(Q) < C(l + chrleLs(m + Hd”Wl«S(Q)) (5.58)
x (H‘fH[Hgl’pl(curl,Q)]’ + ||gH[H(7)/PI (curl, Q)] + ”PO”Wl—l/"v"(F) ) .
HX”le"‘(Q) S C Hg”[Hgl’pl(curl,Q)]/ (559)
Proof. As mentioned before, the scalar y can be found directly as a solution of the Dirchlet problem (5.57). Since
g € [H, 7 (curl,Q)], divg € W=17(Q) and then y belongs to W17 (Q2) and satisfies the estimate (5.59). We
set g = g — V. It is clear that g’ is an element of the dual space [H |, "* (curl,2)]". Moreover, it is clear that
div ¢’ =0 in Q and g’ satisfies the compatibility conditions (5.27). So, problem (5.56) becomes
—Au+ (curlw) x u+ VP — (curlb) xd=f and divu=0 in,
curlcurlb — curl(u xd) =g’ and divb=0 inQ,
uxn=0 and bxn=0 onT, (5.60)
P:PQ OHFO and P=P0+Ci onFi,
(w-n,1)r, =0, and (b-n,1)r, =0.

Thanks to Theorem 5.2, problem (5.60) has a unique solution (u, b, P,c) in W"P(Q) x WP(Q) x W17 (Q) x R!

satisfying the estimate:

||u||wlyp(9) + ||bHW1,p(Q) + HP”WLT(Q) < C(l + [[curlw| =) T ||d||WLS(Q)) (5.61)

x ( ”f”[Hg”p,(curl,Q)]’ + ||g,||[H6"p'(curl,Q)]’ 1 Pollw -2/ (ry ).
Using (5.59), the previous estimate still holds when g’ is replaced by g. O
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The next theorem gives a generalization for the case h # 0.

Theorem 5.4. Suppose that p > 2. Let f,g € [Hgl’p,(curl,Q)]’, Py € W=5(D) and h € W (Q) with the
compatibility condition (5.27) and w, d defined with (5.29)-(5.31). Then the problem (5.56) has a unique solution
(u,b, P, x,c) € WHP(Q) x WHP(Q) x WL (Q) x Wh(Q) x RI. Moreover, we have the following estimate for
(u,b, P):

HU’HWLP(Q) + ”b”Wl:P(Q) + HPHWL’“(Q) < C(l + chrlw”LS(Q) + HdHWLS(Q) )2 (5.62)
X (H'fH[HS/’p/(cur],Q)]’ + ||g||[HS/‘p/(curl,Q)]’ + Hh‘le’"(Q) + HPOHW1*1/7'»7'(F) ) .

Proof. The idea is to lift the data h by using the Stokes problem:

—Au; +VP,=f and divu; =h in€

u; xn=0 onl,
Pr=PF only and P1:P0+a51) onI';,
<’Ll,1"l’l,1>[‘i=0, Vlgzgl

Thanks to Proposition 3.2, there exists a unique solution (u;, P1,a)) € WhP(Q) x Wh(Q) x R! satisfying the
estimate:

lullwoga + 1Pt lwsri) < COIF g o eumnayy + 1Al + 1Pl s )- (5.63)
where 0%(1) ={f,Va¥)a + /(h — Py)VgY -ndo.
r

Next, since g satisfies the compatibility condition (5.27), due to [6, Theorem 5.2|, the following problem:

—Ab; +Vx=g and divb; =0 in,
by xn=0 and x=0 onT,
<b1'n,1>ri=0 VISZQI

has a unique solution (by,x) € WHP(Q) x W7 (Q) satisfying the estimate:
||b1||W1’p(Q) + HXHWL’(Q) < C HgH[HS/'p/(Curl,Q)]’ (564)

Finally, we consider (us, by, P, a®) € W2"(Q) x W27 (Q) x Wh7(Q) x R the solution of (5.36) satisfying
(5.38) and (5.42). Therefore, (uy + uz, by + by, Py + Pa, x, aY) 4+ a(?) is the solution of (5.56). Estimate (5.62)
follows from (5.63),(5.64) and (5.42). O

Note that the estimate (5.62) is not optimal and will be improved in the next result.

Proposition 5.5. Under the assumptions of Theorem 5./, the problem (5.56) has a unique solution (u,b, P, x, ) €
WhP(Q) x WHP(Q) x W (Q) x WET(Q) x R satisfying (5.59) and the following estimate:
HuHWLP(Q) + HbHWLp(Q) + ||P||w1wr'(9)

< C(]' + ”curlw”LS(Q) + ||d||W1=5(Q) ) ( Hf”[Hgle/ (curl, )]’ + ||g||[H6/’p/ (curl, Q)]

+ HPOHWI*U"»"(F) + ||hHW1n"(Q) (1+ chrleLS(Q) + ||d||wlys(9) )) (5.65)

Proof. We can reduce the non vanishing divergence problem (5.56) for the velocity to the case where divu = 0

in , by solving the following Dirichlet problem:

Al=h inQ and 6=0 onTl (5.66)
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For h € W1 (Q), problem (5.66) has a unique solution § € W37 (Q) — W?2P(Q) satisfying the following estimate:

101w () < Cllallwr () (5.67)

Setting z = u — V4, then (5.56) becomes: Find (z,b, P, x, ¢) solution of problem:

—Az + (curlw) x 2+ VP — (curlb) xd = f + Vh — (curlw) x VO in
curlcurld — curl(z x d) + Vx =g+ curl(V0 x d) inQ
divz=0, divb=0 in{)
(5.68)
zxn=0, bxn=0 and x=0 onl
P:PO OHFQ7 P:P0+Ci onFi

(z-n,l)p, =(b-n,1)r, =0, V1I<i<I,

which is a problem treated in the proof of Corollary 5.3. Since V8 € WP (Q) < LP*(Q), by using the definition
of s in (5.6), we have (curlw) x V8 € L"(Q) with z% = % —+ifp <3, pt =2 ifp=3and p* =
if p>3. So f+ Vh— (curlw) x VO € [Hgl’p/ (curl,Q)]’. Now, we consider the term curl(V0 x d) = d -
VV6H -V -Vd . Since d € WH*(Q) — L*(Q) (s > 3/2), then d - VV@ belongs to L"(Q2). Moreover, since
Vd € L?(Q), using the same arguments for the term (curlw) x V0, we deduce that V6 - Vd belongs to L" ().
So, g + curl(Vl x d) € [Hg/’P/ (curl, Q)]" and satisfies (5.27). Thanks to Theorem 5.2, there exists a unique

solution (z,b, P, x,c) € WHP(Q) x WHP(Q) x W (Q) x W7 (Q) x R satisfying (5.59) and

12l ey + 1Bllvwrs, ey + Pl oy < C(1+ lleurlewl| . g + lldll e o)
X (||fH[H8’,p’(C“rLQ>], + VAl pr o) + [[(curlw) x VOl 1, o) + HQH[HS’,p’(erQ)], (5.69)
+ lleurl(V0 x d)ll gy + I Pollyy 1-1/mrr )

with

ci=(f.Vale, , + /(h — Po)Vq! -n do — ((curlw) x V6,Vq\ )q
.

r.p’

— ((curlw) x z, Vg g + ((curlb) x d, Vg )

rp! ' p!

To bound the terms ||(curlw) x V|| ) and [leurl(VO x d)|| .o in (5.69), we write by using (5.67)

[[ (curlw) x VQHLT'(Q) < ”Curlw”LS(Q) VOl o @ = ”CurleLS(Q) Hve”Wl,p(Q)
< C ”CurlwnLS(Q) ||hHW1ﬂ“(Q)' (5.70)

In addition we have

[curl(VO x d)||prq) < lld-VVO| e o)+ IVA- VO (g
< HdHL?’(Q) ||VV0HLP(Q) + ||Vd||LS(Q) HVQHLP* (Q)
< C HdHWl»S(Q) Hhleﬂ'(Q) : (5‘71)

Now plugging the estimates (5.70) and (5.71) in (5.69) gives
||Z||W1,p(m + ”b”Wl-,p(sz) + HP”WLT(Q) < C(l + chrlw”LS(Q) + HdHWLS(Q) )
X ( H'fH[Hg"”l(curl,Q)]/ + ||g||[Hg’~p’(cur17Q)]/ + ”PO”Wl*l/T‘T(F) (5.72)
Bl ey (14 llewrlw]] . ) + 1wy ) )

Thus, summing the resulting estimate (5.72) along with estimate (5.67), we get the bound for (u, b, P) in (5.65). O

We are interested now on the existence of solution for the linearized problem (4.2) in W?(Q) with p < 2. Since
the problem is linear, we will use a duality argument developed by Lions-Magenes [18]. This way ensures the
uniqueness of solutions. For this, we must derive that problem (4.2) has an equivalent variational formulation. We
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then need adequate density lemma and Green formulae, adapted to our functional framework, to define rigorously
each term. We introduce the space

V(Q) = {(u,a,e,T) e W' (Q) x W (Q) x WD (Q) x WD (Q): dive e WEPD' (),

vxnmn=axn=0onI, =0, onTyand § =csteon Ty, (v-n,l)r, =(a-n,1)r, =0, Vlgiél}

and we recall that (-,-)q .  denotes the duality between H? ?(curl, Q) and [HE ?(curl, Q)] with pi* = % 3
Lemma 5.6. We suppose Q of class C**. Let% <p<2. Assumethat f,g € [Hg/’pl (curl, Q)], h=0and P € Wl_%v’“(l“)
satisfying the compatibility conditions (5.27)-(5.28), together with curlw € L*?%(Q) and d € W},’g/Q(Q). Then, the
following two problems are equivalent:

(1). (u,b,P,c) € WHP(Q) x WHP(Q) x WHT(Q) x R satisifies the linearized problem (4.2).

(2). Find (u,b,P,c) € WLP(Q) x WiP(Q) x W (Q) x R withu xn =0andbxn=0 onT, (u-n,1)r, =0 and
(b-n,l)r, =0 for any 1 < i < I such that:

For any (v,a,0,7) € V(Q),

(u, —Av — (curlw) x v + (curla) x d + VO)qp= p — / Pdivvdz
Q

+ (b, curlcurla + curl(v x d) + V7T)ap*p = (f, V)ar p + (9, 0)0r pr — / Pyv - ndo, (5.73)
r
ci = (£, Vg Yar p — / PyVq) -ndo +/ (curlb) x d- Vg daz—/(curlw) xu- Ve dx, (5.74)
r Q Q

Proof. (1) = (2) Let (u,b, P,c) € WLP(Q) x WLP(Q) x W'"(Q) x R’ solution of the linearized problem (4.2). Let us
take (v, a,0,7) € V(2). We want to multiply the system (4.2) by (v, a,6,7) and integrate by parts. Let us study these
terms one by one.

Firstly, we note that the duality pairing (—Aw,v)q, s is well defined. Indeed, since —Au = curlcurlwu and curlu €
L?(Q), it follows that —Au € [Hgl’p/(curl, Q)]’. Besides, recall that v € Wl’p,(Q), so curlv € L?' (€2), and since

1 1 34p 1 1
1,1, 11 5.75
r! r 3p p 3’ ( )
then we have W% (Q) — L™ (). Hence v € H * (curl,Q). Now, by the density of D(Q) in H * (curl, Q) and

Hg*’p(curl, Q), we have

(—Au,v)qr y = / curlu - curlv dz = (u, curl curl v) g« , (5.76)
Q
The last duality pairing is again well defined: the embedding W' () < L?" (2) implies u € HS*’p(curl, Q), and since
curlv € L” (©) then curlcurlv € [Hg*’p(curl, Q)]’. Thus, due to the relation curlcurlv = —Av + V div v, we deduce
that:

(—Au,v)q, p = (U, —Av + Vdivo)ap« p

Observe that since v € V(€), we have divv € W(l)’“”*)/(Q)7 and it follows that Vdive € L®)'(Q) — [H? P (curl, Q)]".
Therefore, since curl curl v belongs to [Hg*’p(curl, Q)]’, we deduce that Awv also belongs to [Hg*’p(curl, Q)]’. This proves

that the last duality makes sense. Next, since dive = 0 on I' and divw = 0 in {2, we have

(deivv)gp*,p:/u~Vdivvdw:—/
Q

divudivvdw+/u~n divvdo =0
Q

r
We conclude that

(—Au,v)ar = (U, —Av)ap* p

We now treat the term ((curlw) x u,v)q, . Since we have curlw € L%(Q) and u € WHP(Q) < LP (Q), then, by
definition of r, (curlw) x u € L"(Q). Besides, v € Wl’p/(ﬂ) < L®)"(Q). So

((curlw) X w,v)q. p :/

(curlw) x u-vdx = —/(curlw) X v-udr
Q

Q
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with the integral well defined thanks to (5.75) and

1
'

For the term (—(curlb) x d, v)q , ,, we proceed as for the previous pairing: we have curlb € L”(2) and d € whs (Q) —
L3(Q), so (curlb) x d € L"(Q). Therefore:

(—(curld) x d,v)q, ,r = 7/

(curld) x d-vdx = f/ curlb- (d x v)dz
Q

Q

Using again the density of D(Q2) in Hg*’p(curl7 Q), we obtain
—/ curlb: (d x v)dz = / b curl(v x d)dz.
Q Q

It remains us to treat the pressure term. Since VP € L"(£2), we have as for the both previous terms the well defined of

the integral:
(VP,v)q, p = / VP -vdx
Q

Using the same arguments as in [7, Proposition 3.7], and taking into account the boundary conditions on the pressure P,

we have

(VP,'U)gr/,pf:/Pv-nda—/Pdivvdw
r Q

I
:/ Pov-nda—i—Z/ (Po—l—ci)v-nda—/PdiV'vdm
I'o = Jr; Q

I
However, since (v -n, 1)r, =0 for all 1 < ¢ < I, we have Z/ ¢; v -ndo = 0. Therefore, we obtain:
i=1 7T

(VP,'U)QT/J,/:/Pov-nda—/Pdivvda:
r Q

Now, multiplying the equation divu = 0 in Q by 6, we obtain by the density of D(Q) in Hp*””(div7 )

0:—/0divudx:/u~V0dm—/9u~ndU,
Q Q r

where we have used the fact that w € W?(Q) < LP*(Q) which implies that w € H?"?(div, ). Combining the boundary
conditions of  on I';, 0 < 7 < I, with zero fluxs of the velocity (u - n, 1)r, = 0 for 1 < 7 < I, we have: / fu-ndo=0.

r
Thus, summing the above resulting terms, we obtain:

(f,v)ar p = (u,curlcurl v)op« —/
Q

—/Pdivvdw—i—/Pov-nda—l—/u~V9dac.
Q r Q

Now, we treat the terms of the second equation of (4.2). For the term (curlcurld, a)q,’ ,, the duality pairing is well

(curlw) X v - udx — / curl(d x v) - bdzx
@ (5.77)

defined and following the same reasoning than for (5.76), we have

(curlcurlb, a)q,, o= / curlb - curladr = (b, curl curl a>gp* ,
Next, for the term (curl(u x d),a)q, ,, the duality pairing is again well defined: since u € W'P(Q) < LP (Q) and
deWhi(Q) < L3(Q), then u x d € LP(Q) so curl(u x d) € [Hgl’p’(curl, )]". Similarly, by the density of D(Q) in
Hg/’p/ (curl, ), we have

(curl(u x d),a)q, = /

curla - (u x d)dx = / u- (d x curla) dz
Q

Q

Here also the integrals are well defined. Indeed, for the first integral, curla € L”l(Q)7 we L (Q),de whs Q) — L3(Q)
and i + p% + % =1.
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It remains us to multiply the equation div b = 0 in Q by 7. By density of D(2) in Wol’(p*)/(Q), we have the Green
formula: for any 7 € WOMP*) (Q)

f/(divb)Tdm:/b~Vde
Q Q

In summary, these terms provided by the second equation of (4.2) give:

(g9,a)qr = (b,curlcurla)op _/

u- (d X curla) dz —|—/ b-Vrdz (5.78)
Q

Q

Finally, adding (5.77) and (5.78), we obtain the variational formulation (5.73).

We now want to determine the constants ¢; in (5.74). Let us take v € WLP(Q) with v x n = 0 on T, and set:

1

’Uo:’U—Z(/ v~nda)Vq,N (5.79)

=1 i

So, o belongs to WP(Q) and satisfies v x m = 0 on T, (vg-n, 1)r, = 0, 1 < i < I. Multiplying the first equation of
(4.2) by v and integrating by parts, we obtain

/curlu-curlvdw—/(curl'w) ><'v~udm+/cur1(v><d)-bdx
Q Q Q

I
_|_/ pov,ndg+Z/ (P0+ci)v-nda:/f~vdx
o i=1 7T 2

We now take a test function (vo,0,0,0) in (5.73). Note that it is possible because of the definition of (5.79):

(5.80)

(u, —Avo)ap=p — /

u - (curlw) Xvodm—/Pdivvgdw+/b~curl(vo x d) dz
Q Q Q

= (f,vo)ar p — / Pyvo-ndo
r

By definition of ¢¥, we have divwg = 0. Besides, curlvy = curlw, so it follows from the same density argument used

previously:

/ curlu - curlvdz —/(curlw) X vo - udr +/ b curl(vg x d)dz = / fvodx — / Pyvo-ndo
Q Q Q Q r
Decomposing vo with (5.79) in the previous equality, we have:

/curlu~cur1vd:c—/(curl'w)><'v~u+/b~curl(v><d)dx—/f~'vdx+/P0'v-ndU
Q Q Q Q r

1
:Z(/ 'v-nda)[—/(curl'w)XVqZNﬂuda:-i- b~curl(quV><d)da:—/ f-quvdx—i-/Pqufv-nda]
= Jr; Q Q Q r

Injecting (5.80) in this calculus, we thus obtain:

I

—izj;ci/riv‘nda = Z(/

i=1 YT

v~nda)[—/(curlw)XquV-udx—i—/b~curl(VqlN><d)dx
Q Q

/f~Vq£de+/Povq§V.nda]
Q r
Therefore, taking v = Vg and since, for all 1 < i,k < I, (V¢ - n, 1)1, = §; x, we have:

ci:—/(curlw)xu-Vq,Nd:c—/b-curl(VqZNxd)da:—i—/f-qude—/PQquV-nda
Q Q Q r

/ (curlb) x d - Vgl dz
Q

which gives the relation (5.74).
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(2) = (1) Conversely, let (u,b, P,c) € WLP(Q) x WLP(Q) x WH"(Q) x RT solution of (5.73)-(5.74) with u x n =
bxn=0onT, and (u-n,1)r, = (b-n,1)r, =0 for all 1 < ¢ < I. We want to prove that (u,b, P, c) satisfies (4.2). Let
us take v € D(Q2), a =0, 0 = 7 = 0 as test functions in (5.73). We obtain

(—Au + (curlw) x u — (curld) x d — f,v)pro)xp) =0, Yv € D)
So by De Rham’s theorem, there exists P € LP(2) such that
—Au + (curlw) X u — (curld) x d+ VP = f

So, (u, b, P) satisfies the first equation of (4.2). Let us now take a € W},p/(Q) withaxn=0onI,v=0,0=7=0as
test functions in (5.73). We obtain

(curlcurlb — curl(u x d) — g, a)szp*yp

Applying a De Rham Lemma version for functionals acting on vector fields with vanishing tangential components (see [20,

Lemma 2.2]), there exists x € L?(2) defined uniquely up to an additive constant such that:
curlcurlb —curl(u xd)+Vx =g inQ and x=0 onTl. (5.81)
But taking the divergence in (5.81), x is solution of the following Dirichlet problem:
Ax=divg=0 inQ and x=0onT
Since g satisfies the compatibility condition (5.28), then x is equal to zero and we have:
curlcurlb — curl(u x d) =

So (u,b) satisfies the second equation in (4.2).
Next, if we choose v =a =0, 7 =0 and 0 € D(Q2), then we obtain dive = 0 in Q. Similarly, if we choose v = a = 0,
0 =0 and 7 € D(Q), we obtain divb =0 in Q.

It remains to prove the boundary condition given on the pressure P. To this end, we follow a method from |7, Proposition
3.7). Let us take as test functions v € wr' (Q) withvxn=0onT and dive € Wol’p* (Q),a=0,0c¢ Wl’(p*),(Q) and

7 = 0 in the variational formulation (5.73). Thus, applying Green formulae as previously, we have:

(_f,v)gr,y , = (u,—Av)q, - —/(curlw) X v - udm—f—/ b-curl(v x d) dz

/V@ udx—/VG UdCL‘—/PleUdl’+/P1) ndo

We decompose v as in (4.9) and to simplify the presentation, we set z = Z (/ v nda) VQzN- So, v = vo + z. By

definition of ¢¥ for 1 <4 < I, we have Az = 0 and divz = 0 in Q. Thus:
(fovo)a,, , +(f,2)e, , =(u,—Avo — (curlw) x vo + Vb)a .  + (b,curl(vo x d)) /V@ udx
—/(curl'w) X z-ud:v+/ b curl(z x d)d:c—/ Pdivvodw—i—/on-nda—i—/ Pz -ndo
Q Q Q r Q

Taking (vo,0,0,0) as a test function in the variational formulation (5.73), we obtain

/on nde/Povo ndaf/VG udr =0

Note that, since divae = 0in Q, § = 0 on I'o, 8 = B; on I'; and (u - m,1)pr, = 0, it follows that /VG cudr =
Q

—/ fdivudr + / fu - ndo = 0. Therefore:
Q r

/(P—Po)vo-ndazo
r

(5.8

(5.8:
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Then, we deduce that

(f.2)a,. +/(curlw)xz-udm—/b~cur1(zxd)dx—/Pz~nda:0. (5.84)
' Q Q Q

Now, using (5.84) and the fact that / vo-ndo =0 for all 1 <i < I, we have

r;
/Pv-ndU:/on~nda+/Pz-ndU
r r r

:/Povo.nda+<f,z>gr,)p/+/
r

Q
I
:/Povo-nda—i—Z(/ 'v-nda) [(f,qu)gr,‘p, —/(curlw)xu~VqlNdaz
r = \Jr, Q

- / b-curl(VgY x d) dx].
Q

(curlw) X z - udzx 7/ b curl(z x d)dz
Q
(5.85)

However, we have from (5.73), for all 1 < ¢ < I,

i = <.faquN>QT/7P/ */PquZN-ndUJr/(curlb) ><d~quVd:cf/(curlw) xu-Vq dx
r Q Q

= <f,VqZN>QT/_’p/ —/POquV.nda—/ b-curl(Vg) Xd)da:—/(curlw) xu- Vgl de.
r Q Q

Therefore, replacing in (5.85), we have:

I
/P'v~nda:/Po'vg-nda+Z(/
r r = NI

i

'u~nda) [ci—i—/FPqulN-nda}

Moreover, applying directly the decomposition (4.9), we have:

I
/Pov-ndU:/Povo~nda+Z(/ v-nda)/POquv-nda
r r - N r

Thus, combining the last two equations, we obtain:

I
/PU'TLdJ:/Pov'ndU+Z(/ v-nda)q:/(Po—i—c)v~nda7
T T i=1 r; r

with ¢ =0 on I'gp and ¢ = ¢; on I'; for all 1 < ¢ < I. We conclude as in [7, Theorem 3.2.] to prove that P = P on I'g and
P:P0-|—C7;OHF7;. O

We are now in position to prove the following theorem

Theorem 5.7. We suppose 0 of classe C'. Let 3 < p < 2. Assume that f,g € [Hg/’pl (curl,Q)), Py € Wl_%”“(l"),
h € WY (Q) with the compatibility conditions (5.27)-(5.28), together with curlw € L*?(Q) and d € W},’3/2(Q) . Then
the linearized problem (4.2) has a unique solution (u,b, P,c) € WHP(Q) x WHP(Q) x W' (Q) x RL. Moreover, we have

the following estimates:

HuHWLP(Q) + ”bHleP(Q) <C+ ”Cur1w|lL3/2(Q) + HdHW1‘3/2(Q))( HfH[HS’,p’(CU“’Q)]/

(5.86)
+ HPOHWF%,T(F) + H9||[Hg’,p’(cur1ﬂ>] + (L + [leurlwl| p3/2 o) + Al yy1.5/2(q)) ||h||wlwr‘(n))
HPHleT(Q) <O+ chrlw||L3/2(Q) + ||d||wly3/2(sz))2 X (”fH[Hg’,p’(cml’Q)]/ (5.87)
1901157 iy 1Py 2 ) + (L lleurl ] o ) + elysrzgon) Il )

Proof. Since 2 < p’ < 3, thanks to Theorem 5.4, we have for any (F, G, ¢) € [H? 7 (curl, Q)] x[H? P (curl, Q)] LK%, () x
WOI’(p*)I (©) that the following problem
— Av — (curlw) X v+ VO + (curla) xd=F and divv=¢ inQ,
curlcurla + curl(v xd) + Vr =G and diva=0 in{, (5.88)
vxn=0, axn=0 and 7=0 onI, =0 only and O6=p; onl},

(v-n,l)r, =0, and (a-mn,l)r, =0, 1<i<I.
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has a unique solution (v, . 0,7, 3) € W' (Q) x W' (Q) x WH®™ (@) x W' (Q) x B! with dive € Wo®'(Q) and
B = (B, ,PBr) such that:

Bi = <F,quv>gp*’p + {(curla) x d, qu)gp*’p ((curlw) x v,Vq;") - /gzﬁqu -ndo.
Moreover, this solution also satisfies the estimates:

[l oy + lallwr @) + 18100y @) < C(1+ lleurlwll g o+ ldll g )

5.89
< (1l g oo + G g e + (0 F el g g ) 19l om ) )- o
We note that, from Theorem 5.4 for 2 < p’ < 3, the value of s is 3/2. Using (5.89), we have
[E R /Pov n dof
\Hf||[H8/,p/(cu,m)], ||v||HSap/(cu,l,m+||g||[Hr # carn ey 19y curn gy POt ol aa s
OIS N gz cemencny 190 " et e + 1PN 11 ) (Il o + gt ) (5.90)
<O ggr # (euen iy + 18 0iezs” o (et oy + 101 1,%,,.(”)(1+chrlwnL%(Q)+||duwl,%(m)

(L HGIIHg*,p(mm) F Ut flewrlwl g g ) (6o o) )

We deduce that the linear mapping (F,G,¢) — (f,v)a,, ot (g,a)a, o fr Pov - ndo defines an element of the dual

space of H’D’*"D(curl7 Q) x Hg*’p(curl, Q) x WP (Q). It follows from Riesz’ representation theorem that there exists a
solution (u, b, P) in Hg*‘p(curl7 Q) x Hf;*’p(curl, Q) x WP (Q) of the problem

(u, F)ap=p + (b, G)ap= p — (P, ¢>W Lp* (Q)x Wb S(p* )'(Q) (Fiv)am 1y T (9,a >QT'7P’ - / Pyv-ndo

which is the variational formulation (5.73). Moreover, it satisfies the estimate:

1
Il iz p (curty F 102" 2 eurniy + (1 leurlwllps 2 o) + lldllwa/2 ) ) I1Pllw 107 0

(5.91)
<0(1+chr1'w”L3/2(Q) +||dHW1’3/2(Q )(

APl

)-

In order to recover the solution of (4.2) through the equivalence result given in Lemma 5.6, it remains us to prove that
u,b € WHP(Q), P ¢ WH™(Q), that (u-n,1)r, =0, (b-n, 1)y, =0 for all 1 <4 < I and to recover the relation of (5.74).

We firstly want to show that u-ndo =0 and b-ndo = 0. We choose (07 0,0,0) with 6 € whe"' () satisfying
0 =0onTyand 6 =0d;; on T for all 1 < Iandaﬁxed 1 << I. Then:
0= (u,Vl)a,. A = / u-Vodr :/Gu-nda—/ divufdzx :/ u-ndo
' Q r Q r;

i

H-fH[HT 0’ (curl Q)]/+Hg||[HT‘ p’ (curl Q) (F)

I
For the condition / b-ndr=0foralll<i<I, weset b=>b— Z (b-n,1)r, Vg . Observe that by the definition of

Iy =
¢V, b is also solution of (5.73) and satisfies the condition (b-m,1)r, = 0.

Next, taking test functions (0,0, 6,0) and (0,0,0,7) with 0 € Wl‘(p*)/(Q) as above and 7 € D(2), we respectly recover
divu = 0 and divb = 0 in Q. Besides, since u, b € Hé’*‘p(curl, ), we have u and b belong to X%;(2). From Theorem
3.1, we deduce that u,b € W?(Q). Thus, the estimate (5.86) follows from (3.4) and (5.91). Finally, in order to prove

that P € W' (Q), we take the test functions (v, 0,0,0) with v € D(Q), and we obtain as in the proof of Lemma 5.6 that:
VP = f+ Au — (curlw) X u + (curld) xd in Q.
Then taking the divergence, P is solution of the following problem

AP =div f + div((curld) x d — (curlw) x u) in Q,
P=P onl'y and P=PFPy+c¢; onl;. (5.92)
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Since curlw € L%(Q) and u € WHP(Q) < LP (Q), then (curlw) x u € L"(2). Besides, curlb € LP(Q) and d €
ng(Q) — L3(). So (curlb) x d € L"(Q). Hence, we obtain that AP € W~>7(Q). Since Py belongs to W1~1/""(I),
we deduce that the solution P of (5.92) belongs to € W7 (Q). Moreover, it satisfies the estimate

[Pl < v flly -1 (o) + ldiv((curld) x d — (curlw) x w)(ly, 1. ) + [ Pollwr-1/r.r )

Applying the characterization of [Hgl’p,(curl, )]’ given in Proposition 3.1, we write f = F + curl ¥ with F € L"(Q2) and
¥ e LP(Q). So

. . div F, 0 F, V0
[ div .fHW*L’"(Q) = ”leFHW*l»’"(Q) = sup |‘|é|\7’>| = 8 H‘;”7/>‘ < HFHL’”(Q)7
oewd " (@) whr'(Q)  gewd (o) Pwir (@)
which implies that
e F o (5.93)

In the same way, we have:

|(curld) x dl|;r oy < lleurld||p,q) 12l 130

[div((curld) x d)|lyy—1.r(q) <
<

Ca Bl 1l 5. (5.99)
where Cy is the constant related to the Sobolev embedding whs () — L*(Q). Next,
[div((curlw) x u)|lyy—1.rq) < |(curlw) X u|[z,q) < chrleLgm) lull Lo~ (o)
< Cllewrlwl g el (5.95)

where we have used the Sobolev embedding W1?(Q) < L?" (Q). Using estimates (5.93), (5.94), (5.95) combined with the

estimate (5.86), we obtain the estimate (5.87) for the pressure. O

The following result gives the regularity W1 (Q) with p < 2 when the divergence of the velocity field u does not vanish.

Corollary 5.8. Let 3 < p < 2. Assume that f,g € [Hgl’p,(curl, ), P e Wl_%*r(l"), h € WHT(Q) with the compatibility
conditions (5.27)-(5.28), together with curlw € L%?(Q) and d € W};S/Z(Q) . Then the linearized problem (4.2) has a
unique solution (u,b, P,c) € WHP(Q) x WHP(Q) x Wh™(Q) x RY. Moreover, we have the following estimates:

HUHW1=P(Q) + ||bHW11P(Q) <O+ ||cur1w||L3/2(Q) + HdHWLS/?(Q))( H'fH[HSI’P/(curl,Q)]’ + (5.96)

1P gy + 18 gy + (1 e 0l 7z ) + s r2y) Bl )
and

2
1Py < OO+ lleurlwll /e gy + ldll i) < ( +

[ | R —
(Fo ™ (curt,2)] (5.97)

+ ||QH[H8’,p'(C“rLQ)] + HPOHW1—%TT<F) + (1 + [leurlwl| /2 o) + 1Al y1.3/2 (o)) [1Bllyyr.r (o) )

Proof. We can reduce the non-vanishing divergence problem for the velocity to the case where divu = 0, by solving the

Dirichlet problem:
Af=h inQ and f6=0onT.
For h € W'7(Q), the solution § belongs to W*7(Q) and satisfies the estimate
10llyys.r @) < Clhllwrr(q) - (5.98)

Setting z = u — V0, we obtain that (z,b, P, ¢) is the solution of the problem treated in the Theorem 5.7 with f and g
replaced by f = f + Vh — (curlw) x VO and g = g + curl(V0 x d) respectively.

Indeed, we have Vh € L"() < [H} * (curl, Q)], and since VO € W2"(Q) < L”" (Q), then (curlw) x V0 € L"(Q) <
[Hgl’p/(curl7 )], and VO x d € LP(Q) so curl(VO x d) € [HS/’pl(curl, Q)]’. Therefore, f,g € [Hgl’p/ (curl, Q)]’. Besides,
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since we add a curl, then g still satisfies the compatibility conditions (5.27)-(5.28). Thus, applying Theorem 5.7, we have

the estimate:

2l ooy + 1Bllwney < O(1+ lleurlwll g o+ ldll g o, )

X ; + [] ! + || P )
( H H[Hgl’p/(curl,fl)]’ H ”[110 P (curl,)]’ H OH |44 17%17‘(1—‘)
We want to control the terms on f and g.

+ IVA]| + ||(curlw) x V||

H H[Hgl’pl(curl o) <l (=7 (curl, Q)] (H; P (curl, Q)] (=P (curl, )]/

<7l (HE P (curl, Q)] + HVhHLr(Q) + [[(curlw) x VGHL’"(SZ)

<

< ey + Iy + Clleurlowll g V8]0 e

and

+ |lcurl(d x VO)||

Hg” H' » (curl, )]’ S ||g|| Hr P’ (curl,Q)])’ Hg/’p,(curl,ﬂ)]’

< +lld % VO £poy

I

<19l emmr sy + Il 1.5 g 190 2o )

Therefore, from these two last estimates combined with (5.98), we obtain the estimate (5.96).
Moreover, we also obtain from the Theorem 5.7:

2
1Py <C(1+ leurtwl g o+ ldl 0z, )

x (HfH[ ! (curl,Q)]’ HQH T »! (eurl, Q)] + HPOH li%m(r‘))‘

Using the same arguments as previously, we can obtain the estimate (5.97). O

In this subsection, we always take Py € Wl_’”( ) to obtain P € W"(Q). However, since the pressure is decoupled
from the system, we can improve its regularity given in the previous results by choosing a convenient boundary condition.
For this, we begin by the following regularity concerning the Stokes problem (Sar) which is an improvement of [8, Theorem
2.2.6]:

Theorem 5.9. Let Q be of class CV'. Let us assume f € [HSl’pl(curl, Q)] and h € WHT(Q) with 1 < r < p and
1< % + % Then

1. Ifr<3and Py € W_%’T* (), the Stokes problem (Sxr) has a unique solution (u, P) € W'P(Q) x L™ (Q).

2. Ifr>3and Po e W™ ( ) for any finite number q > 1, the Stokes problem (Sn) has a unique solution (u, P) €
WhP(Q) x LY(Q).

Proof. Taking the divergence in the first equation of (Sxr), we have:

AP =div f + Ah in Q,
P=Py onT'y and P =PF,+c¢;onl;.

We split this problem in two parts: find P; such that
(P1) AP, =divf+Ah inQ and Py=0onT,
and find P> such that
(P2) AP, =0 inQ, P=Pyonly and P> = PFPy+c;onl;.

We note that the regularity of P; is only dependent of div f and Ah, and then we choose P, in order to recover for P» the
same regularity as than for P1. Then, we obtain the regularity of P by adding P; and P». Let us analyze problem (P;). Since
fe [HS/’p/(curl, Q)]', there exists F € L™(Q) and ¥ € LP(Q) such that f = F + curl ¥. So div f = divF € W~ ""(Q).
Moreover, we have Ah € W™1"(Q). Then, div f + Ah belongs to € W~7(Q) which implies that problem (P;) has a
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unique solution P, € W' (Q). Next, we determine the regularity of P, with respect to the data Py. We note that Py must
be chosen so that the solution P> of (P2) could belong to a class of spaces containing spaces for P;. We distinguish the
following cases:

Caser<3: If Py € W (I') with r* = ;2= the solution P, of problem (Pz) belongs to L (Q). Since P, €
WhT(Q) < L (2), we deduce that P = P; + P, belongs to L" (£2).

Case r > 3:

We have Py € W' (Q) — L%(Q) for any finite number ¢ > 1 if r = 3, for ¢ = oo if r > 3. Thus, taking Py € Wﬁé’q(l“)
for any ¢ > 1 we have P, € LY(Q) and then P € L(Q). O

Remark 5.2. Observe that, using the above splitting, if Py € Wlfl/”"(f’), we have immediately P € W7 ().

The regularity result given in Theorem 5.9 enables us to improve the pressure in the linearized MHD system (4.2). In

particular, we have the following result

Corollary 5.10. Letp > £, f,g € [Hgl’p,(curL Q), h e Wh(Q), Py € Wt (T) satisfying the compatibility
condition (5.27)-(5.28). We suppose that

3
e curlw € L%(Q) and d € W},Q(Q) if3<p<2.
o curlw € L*(Q) and d € WL*(Q) if p > 2, where s is defined in (5.6)

Then, the solution (u,b, P) given in Proposition 5.5 and Theorem 5.7 of the linearized MHD problem (4.2) belongs to
WLP(Q) x WHP(Q) x L7 ().

Proof. We are going to take advantage of the regularity results for the Stokes problem (Sxr) given in Theorem 5.9. Then,

we can rewrite (4.2) in the following way: Find (u, P, ¢) such that

—Au—I—VP:} and divu=~h in
— |Juxn=0 onl,
(Sw)
P:PO OHFO and P:P0—|—ci OIlFi7
(u-n,1)r, =0, 1 <i< I,

with } = f — (curlw) x u + (curlb) x d and find b solution of the following elliptic problem

curlcurlb=g inQ and divb=0 in Q,
(5\//) bxn=0 onl
(b-m, 1), =0, V1<i<I,

with g = g + curl(u x d). As in the previous proofs, we can easily verify that the assumptions on f, curlw and d imply
that the term }' belongs to [HS,’pl (curl, )]’ for both cases p < 2 and p > 2. Thanks to Theorem 5.9, there exists a
unique solution (u, P,¢) € WHP(Q) x L (Q) x R! for the problem (31/) Besides, the existence of b is independent of the
pressure. Indeed, g belongs to [Hg"”' (curl, Q)] and satisfies the compatibility conditions (5.27)-(5.28). It follows from
Lemma 3.4 that problem (Ex) has a unique solution b € Wh?(€). O

5.3 Strong solution in W2?(Q); 1 < p < 6/5

The aim of this subsection is to complete the LP—theory for the linearized MHD problem (4.2) by the proof of strong
solutions in W2P(Q) with 1 < p < 6/5. One of the approach that we can use is to consider w and d more regular in a first
step and then remove this regularity in a second step. Since the proof with this approach highly mimics that of Theorem
5.1, we put it in the Appendix (see Section 7). We are going to give a shorter and different proof where we take advantage
of the regularity WP (Q) with 1 < p < 2 for the linearized MHD problem (4.2).

Theorem 5.11 (Strong solution in W>?(Q) with 1 < p < £). Suppose that Q is of class C*' and 1 < p < &. Assume
1

h =0, and let f,g € LP(Q), Py € W' #?(I), curlw € L*?(Q) and d € W},’s/Z(Q) with the compatibility conditions

(4.5)-(5.1).
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Then the linearized problem (4.2) has a unique solution (u,b, P,c) € W2P(Q) x W2P(Q) x WHP(Q) x R! satisfying the

following estimate:

2
||'U'||W2~p(§z) + Hb”WZvP(Q) + ||P||W1,p(sz) < C(l + HCUI'IWHL%(Q) + HdHWl,g(m) (5.99)

(I lrcey + lolray + 1Pl a2 )

Proof. Observe that
LP(Q) — [H™® (curl,Q)), Py e W'V/PP(T) s W=VmT(D), (5.100)

1_1_ 1
Wherep—*—p 3

for the MHD system (4.2) for small values of p (see Theorem 5.7 with h = 0), we can deduce the existence of a solution
(u,b,P,c) € WH"(Q) x WP (Q) x W (Q) x R’ satisfying the estimate

and % = %+ % Since 1 < p < 6/5, we have % < p* < 2. Then applying the regularity W?(Q)

||u||W1~P*(Q) + ||b‘|w1,p*(n)

< O+ ||curlw||L3/2(Q) + HdHW1=3/2(Q))(||fHLP(Q) + ”PO”Wl—%,r(F) + Hg”LP(Q) )7 (5.101)
where we have used the embedding (5.100) and

1Pl oy SO+ lleurlwll sz ) + Nl or200)* (1 oy + 1Bl ) + lgllince) )

Since W™ (Q) — LP" (Q) with -1 = p% — 1, the terms (curlw) x w and (curlb) x d belong to L”(2). (u, P, ¢) is then

P
a solution of the problem (Snr) with h = 0 and a RHS f in LP(2). We deduce from Proposition 3.2 that (u, P) belongs
to W 2P(Q) x WP(Q) and satisfies the estimate

Il 2.0 + 1Pl 100) < CS(H-f”[LP(Q) + [[(curlw) x wl|pp ) + [[(curld) x d|| ;) + ||P0||W17%,p<r) ) (5.102)

Next, b is a solution of the elleptic problem (5\//') with a RHS g+ curl(u x d) which belongs to L?(€2). Thanks to Theorem
3.3, the solution b belongs to W*P(Q) and satisfies the estimate

||b||w2,p(n) < CE( ”g”[L:D(Q) + |lcurl(w x d)HLP(Q) ) (5.103)
Moreover, we have the following bounds

[[(curlw) x uHLF(Q) < chrleL3/2(Q) Hu”Lp**(Q) <C ||C“r1w”1,3/2(9) w10 Q) (5.104)

[|(curlb) x dHLP(Q) < |leurld| 1, Q) ||dHL3(Q) <C Hd||L3(Q) 10l yp1.0% Q) (5.105)
and similarly,
[[curl(w x d)HLP(Q) <l(a- V)uHLP(Q) + [ (u - V)dHLP(Q) <cC ||uHW1,p*(Q) (HdHLS(Q) + ||VdHL3/2(Q))'

Collecting the above bounds together with (5.101) in (5.102)-(5.103) leads to the bound (5.99).
O

Proceeding as in the proof of Corollary 5.8, we can extend the previous result to the non-vanishing divergence case. The

proof of the following result can be found in the Appendix (see Section 7).

Corollary 5.12. Let Q be of class C*' and 1 < p < g Assume that f,g € LP(Q), Py € Wlf%‘p(I‘), h € WHP(Q),

curlw € L¥2(Q) and d € WL1,’3/2(Q) with the compatibility conditions (4.5)-(5.1). Then the linearized problem (4.2) has
a unique solution (u,b, P,c) € W2P(Q) x W2P(Q) x WHP(Q) x RY. Moreover, we have the following estimates:

||uHW2wP(Q) + Hb”w?,p(g) + ||P||w1,p(Q)

2
<O+ leurtwl] g 1l g o (1 oo + 8]0 + 1P 2ss (5.106)

+ (Lt fleurlw] g o Fldl g 1g o) 1A a-20 )
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6 The nonlinear MHD system

In this section, we consider the nonlinear problem and we study the existence of generalized and strong solutions for
(MHD).
6.1 Existence and uniqueness: L*-theory

In this subsection, we establish the existence and uniqueness for the weak solution in the Hilbert case for the problem
(MHD). The following result is one of the main results. First, we recall that (-, -)gnp denotes the duality product between
[H{?(curl, Q)] and Hy” (curl,Q) and (-, -)r denotes the duality product between H~'/%(I") and H'/*(I).

Theorem 6.1. (Weak solutions of (MID) system in H'(Q)). Let Q be of classe C*' and let
f, g€ [H(curl,Q)), h=0 and Pye H (D)
satisfying the compatibility conditions

Vo e K?V(Q)7 <gav>QGY2 =0, (61)
divg=0 in Q. (6.2)

Then the (MHD) problem has at least one weak solution (u,b, P,a) € H'(Q) x H*(Q) x L*(Q) x RY such that
Hu’HHl(Q) + ||bHH1(Q) + ||P||L2(Q) <M, (6.3)

where M = C(Hf”[Hg‘Q(curl,Q)]/ + HQH[HS)Q(CUH,Q)]/ + HP0||H—1/2(F)) with

a; = <f,Vq,N,)QG - (Po, Vgl -n)r + / (curld) x b- Vg dx — / (curlu) x w - Vg da. (6.4)
’ Q Q
In addition, suppose that f, g and Py are small in the sense that
2
Ci103M < —= 6.5
142 =~ 3072)’ ( )

where Cp is the constant in (3.6) and C1, Cs are given in (6.15). Then the weak solution (u,b, P) of (MHD) is unique.

We first recall that the space V 5 (Q2) denotes
Va(Q) :={ve H(Q); divv=0inQ, v xn=0onT, (v-n,1)r, =0, V1 <i<I}
and we give the following definition.

Definition 6.2. Given f,g € [Hy*(curl,Q)]" and P, € Hié(lﬂ) with the compatibility conditions (6.1)-(6.2), (u, b, ;) €
VN(Q) x V() xR is called a weak solution of (MHD) problem if it satisfies: for all (v, ¥) € V() x VN(Q),
/ curlu - curlvdz + / (curlu X u) - vdx — / (curlb x b) - vdx +/ curlb - curl ¥ dx
Q Q Q

Q
I (6.6)

+ / (curl® x b) -udz = (f,v)o,, +(9, ¥)a,, — (Po,v-m)ry — Z(Po + ai,v-n)r,
o : :

i=1

and

o = (f,quV>Q6 , —(Py, Vg - TL>[‘+/ (curlb x b) - Vg dw—/ (curlu x u) - Vg d. (6.7)
’ Q Q

To interpret (6.6)-(6.7), it is convenient to remove the constraint of fluxs of the test functions through T';. In the
following Lemma, we prove that (6.6) can be extended to any test function (v, ¥) € X% (Q) x X% (Q).

Lemma 6.1. Let f,g € [HY?(curl, Q)] and P, € Hﬁé(F) with the compatibility conditions (6.1)-(6.2). Then, the
following two statements are equivalent:

(i) (u,b,a;) € VN(Q) x Vn(Q) X R satisfies (6.6)-(6.7) for any (v, ¥) € V() x VN(Q).

(ii) (u,b, ;) € VN (Q) x V§(Q) x R satisfies (6.6)-(6.7) for any (v, ®) € X% (Q) x X%(Q) .



6.1 Existence and uniqueness: L?-theory 39

Proof. Since V x(Q) C X% (Q), then (ii) implies (i). Conversely, let (u, b, ;) € Vn(Q) x V n(Q) x R satisfying (6.6)-(6.7)
for any (v, ¥) € Vn(Q) X V() and we want to show it implies (ii). The proof is similar to than given for the linearized
problem (see Proposition 4.1).

Let (¥,%) € X% () x X%(Q). We set

1 1
\Il:\ileOi’-n,l)rdi,N and v="v— Zv n, 1)1, Vg .
i=1 i=1
X VN(

Then, (¥, v) belongs to V x () Q). Replacing in (6.6)-(6.7), we obtain

/curlb-curl‘f’dm—i—/(curl‘flXb)~udw—<g,€l)962 —&—/curlu-curlﬂdw
Q Q ' Q
I

+/(curlu><u)-§dm—/(curlb><b)~5dm—(f,5>962 +(Po, - m)ry + > _(Po+ i, m)r,
o :

Q =1

1
= Z(‘i’ -m, L)r, (/ curlb - curl(Vg") dx +/ (curl V') xb - udae — <Q,VQZN>QG 2 )
i=1 Q Q 1

— — (6.8)
=0 =0 =0due to (6.1)
I
+ Z(TJ -m, 1)p, (/ curlu - (curl VqZN) dx — / (curld x b) - Vel dx + / (curlu X u) - Ve dz
vt Q —_— Q Q
=0
- <.f7 quN>5‘2612 + <P07 v‘]’fv : n>FO + Z(PO + oy, VQ'ZV : 'fl>1“j)
j=1
So, we have
I
Z(f) -m, 1)p, ( —/(curlb x b) ~quv dx —|—/(curlu X u) - VqZN dx — <f,VqZN>QG 5
i=1 2 2
I
+ (Po,Va -nir, + Y (Po + a5, Ve -nir, )
j=1
Since ¢ satisfies (3.2), we have in particular that Z;:1<Oéj7 Vi -n)r; = a;0;;. Then, we obtain
I
Z(Po + aj, VqlN -n) Z Po,VqZ - ) r; +a; (6.9)
j=1 j=1

Replacing (6.7) in (6.9), we obtain from (6.8) that

/ curlwu - curlvde + / (curlu X u) -vdx — / (curld x b) - vdx +/ curlb - curl ¥ dz
Q Q Q Q
I (6.10)

+ / (curl @ x b) - wdzx = (f,¥)o, , + (9, ¥)a, , — (Po,v n)r, — »_(Po+ i, -n)r,
o , ,

i=1

which is (6.6) with test functions (¥,7) € X3 (Q) x X% (€). This completes the proof.

We can now prove the following result
Theorem 6.2. Let f,g € [H?(curl, Q)] and Py € Hﬁé(l“) with the compatibility conditions (6.1)-(6.2). Then, the
following two statements are equivalent:
(i) (u,b, P,a;) € H'(Q) x HY(Q) x L*(Q) x R is a solution of (MHD),
(i) (u,b,a;) € VN(Q) X VN(Q) X R is a weak solution of (MHD), in the sense of Definition (6.2).

Proof. The proof that (i) implies (ii) is very similar to that of Proposition 4.1, hence we omit it. Let (u,b,a;) €
VN (Q) x V() x R satisfying (6.6)-(6.7) for any (v, ®) € V5(Q) X V(). Due to Lemma 6.1, we have that (u,b,«;) €
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VN (Q) x VN(Q) x R satisfies also (6.6)-(6.7) for any (v, ¥) € X% (Q) x X% (Q). Choosing v € D,(Q2) and ¥ = 0 as test

functions in (6.6), we have
(—Au + (curlu) x u — (curld) x b — f,v)p/(@yxD() = 0.
So, by De Rham’s theorem, there exists an unique P € L?(2) such that
—Au+ VP + (curlu) x u — (curlb) xb— f =0 in Q. (6.11)
Next, choosing (0, ¥) with ¥ € D,(Q) in (6.6), we have
(curlcurld — curl(u x b) — g, ¥) pr () xp() = 0-
Then, applying [20, Lemma 2.2], we have x € L*(Q) defined uniquely up to an additive constant such that
curlcurlb — curl(u X b) —g =Vyx inQ and x=0 onTl
Since x is solution of the following harmonic problem
Ax=0 inQ and x=0 onT.

We deduce that x = 0 in © which gives the second equation in (M HD). Moreover, by the fact that w and b belong to the
space V n(€2), we have dive =divb=01in 2 and u x n = b x n =0 on I'. The proof of the boundary conditions on the

pressure is fairly similar to that given in [7, Proposition 3.7]. O

Proof of Theorem 6.1:

We use the Schauder fixed point Theorem. We make use of the product space Zn(2) = Vn(Q2) x V() defined in
(4.17). We define the mapping G : Zy(Q2) — Zn(Q2) such that G(w, d) = (u,b) with (u,b) € Zx(2) a solution of the
linearized problem (4.18). By Theorem 4.2, for each pair (w,d) € Z () the solution (u,b) € Z () of problem (4.18)
exists, is unique and satisfies the following estimate:

2 2
I b =l

o, ) F < CUfl +

52 (curl,0))/

Rl | )=M (6.12)

g
I ||[H8’2(curl,ﬂ)]/ Ho3

for some constant C' > 0 independent of w and d.

We define the ball
B, ={(v,®) € Zn(Q);  [l(v,¥)llz @) ST}
where r = M = C( Hf|\[Hg,2(curLQ)], + HgH[Hg,z(curl’Q)], + HPOHH*%(F) ). By the definition of G and (6.12), it follows that
G(B,) C B, and then G is a mapping of the ball B, into itself. Now, we want to prove that the operator G is compact
on B,. For this, let {(ws,dx)}r>1 be an arbitrary sequence in B,.. Since H'(Q) is reflexive, there exists a subsequence
still denoted {(wx,dx)}x>1 and a pair (w,d) in B, such that (wy, di) converges weakly to (w, d) in H'(Q) x H'(Q) as
k — co. We set (ug,bp) = G(wg, di) and (@, b) = G(w, d). We have to prove that (ux, b) converges strongly to (u, b)
in H'(Q) x H'(Q) as k — co. By the compactness of the embedding H'(Q) — L*(Q), we have that wy — w strongly
in L*(Q) and di — d strongly in L*(Q). By definition (s, bx) and (%, b) are solutions of

a((wr, br), (v, W) + duy,a; ((ur, br), (v, ¥)) = L(v, V),
and
a((@,b), (v, ®)) + aw,a((W,b), (v, ®)) = L(v, ¥). (6.13)
where the forms a and a4 are defined in (4.16). By subtracting the above problems, we obtain

(curl(ur — ), curlv) + (curl(by, — b), curl ¥) + ((curl wy) X ur — (curl w) x u,v)
+ (uk,(curl®) x di) — (u, (curl ¥) x d) — ((curlby) X di,v) + ((curlg) x d,v) =0 (6.14)

Since

((curl wi) X up — (curlw) x u,v) = (curlw x (ur —u),v) + (curl(wr — w) X Uk, v)
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and

(ur, (curl @) x di) — (@, (curl @) x d) — ((curlby) x di,v) + ((curlb) x d, v)

= (ur —u,(curl¥) x d) — (ug, (curl ¥) x d) — (curl(b, — b) x d,v)
+  ((curlbg) x d,v) + (ug, (curl ¥) x d) — ((curlby) x dg,v).

Then, replacing in (6.14), we obtain
al(ux — @by — B), (v, ) + aw,a((we — @ by — b), (v, ))
= —(curl(wr — w) X uk,v) + (ug,curl ¥ x (d — di)) — (curlby x (d— di),v)
By Holder inequality and the fact that (ug, bi) belongs to B,., we have

|(curl(wy — w) X up, v)| < C2 [wi = wl| L) [kl g o) [Vl a1 (@)

< CoM ||lwi — w||L4(Q) ||'U||H1(Q) ’

|(uk, curl ¥ x (d — di))| < [[url[paq) lcurl ¥ 12 q) |d — dillpa(q)
S C1OM || ¥ g1 (g 14 — dillpaq,
and
|(curlby x (d — di),v)| < C|lcurlbr| 2o |d — dill Loy V] La(q)
<CiCM||d — dkHL4(Q) ||v||H1(Q)

where C71 > 0 and Cy > 0 are such that

chrl'vHL?(Q) <Gy ||'U||H1(Q) and ||'UHL4(Q) <Oy ||'U||H1(Q) . (6.15)

Choosing (v, ¥) = (ur — u, by, — b), thanks to the coercivity of the form a in (4.19) and the fact that a.,q((ur —u, by —
b), (ux — @, bx — b)) = 0, we obtain

Cl%( lur = @ll3 gy + 10k = Bll7r (@) <l al(ur — @, br —b), (wr — u,bi — b)) |
< CoM [jwy — w||L4(Q) [|wr — ﬁHHl(Q) + C1C:M ||d — dk||L4(Q) ([l — ’H’”Hl(ﬂ) + bk _E”Hl(ﬂ))
< % lur — @l o) + %ku = bl () + CEM? wi — w||2L4(Q) + ngC§M2 ldi — d||74( -

So, we have

~12 72 2 2
llur — uHHl(Q) + [ox — bHHl(Q) < C( lwe — wHL4(Q) + lldi — d||L4(Q)) — 0 ask —0,

where C' = C% max(C5M?, %CfC%M 2) is independent of k. Hence, this gives the compactness of G. From Schauder’s
theorem we then find that G has a fixed point (&,b) = G(%,b) € B,. This fixed point is solution of (6.13). Moreover,
(, b) satisfies (6.12).

Now, we establish the uniqueness of the solution of (MHD). For this, let (w1,b1, P1) and (ugz,bz, P2) in V n(Q2) X
VN (Q) x L? (©) be two solutions of (MHD). We set u = u1 — u2, b="b1 — by et P = P; — P, and we want to prove that
u=>b=0and P=0. Choose v=u and ¥ = b in (6.6), then (u, b) satisfies

||curlu||i2(n) + ||cur1b\|iz(m + ((curlui) X w1 — (curlus) X uz, u)

— ((curlb1) x by — (curlbz) x bz, u) + ((curld) x b1, u1) — ((curld) x b2, u2) =0

Observe that
((curlui) x w1, u) — ((curluz) X uz,u) = ((curlu) X ui,u).

and

— ((curlby) x by — (curlbz) X bz, u) + ((curld) x by, u1) — ((curlb) x bz, uz)
= ((curlb) x b,uz) — ((curlbz) x b, u)
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which gives

chrluHiQ(m + chrleQLg(Q) + ((curlui) X w1 — (curlug) X uz, u)

— ((curlby) x by — (curlbz) x bz, u) + ((curld) x b1, u1) — ((curld) x bz, u2)

= |lcurl u||?* + [|curl b||* + ((curl u) x u;,w)

+ ((curld) x b,uz) — ((curlbs) X b, u)
Then,

lcurl w||®* + ||curl b||* = ((curlbs) x b,u) — ((curlw) x ui,u) — ((curlb) x b, us) (6.16)
We want to bound the terms in the RHS of (6.16). We have
(eurla) x )] < fleurlul s g, L1 o [l
< C10 [|wll 3 q ]l paa

2 2 2 2
< G103 HUHHI(Q) ”ul”Hl(Q) <GiGM HuHHl(Q) )

|((curlb) x b, uz)| < chrlan?(sz) Hb||L4(Q) ||u2HL4(9)
<Ci03 ||bHiIl(Q) ||u'2HH1(Q)
< CL03M ||b‘|i11(m )
and
[((curlbe) x b,w)| < [leurlba | (g 1bll g Il s ey
< 01022 ||b2||H1(Q) HbHHl(Q) ”uHHl(Q)
< SO CEM ([l o) + 61301 )

Using these estimates in (6.16) together with Poincaré’s type inequality (3.6), we obtain

1 3
o Ul ) + 610 @) < lleurlaul® + leurl bl < SCiCEM(Juldn o) + 1Bl ).
P
where C'p is the constant in (3.6). From this relation, we obtain
1 3
(0772) - 501022]\/-’)( ||UH§11(Q) + ||b”§11(9)) <0.

This, together with condition (6.5), implies that w = b = 0. The construction of the pressure P € L?(Q) follows from

De Rham’s Theorem (see 6.2).

6.2 Weak solution: LP-theory, p > 2

In this subsection, we study the regularity of weak solution of system (MHD) in LP-theory. We start with the case p > 2.
The proof is done essentially using the existence of weak solution in the hilbertian case and a bootstrap argument. To take
advantage of the regularity of the Stokes problem (Sxr) and the elliptic problem (Exr), we can rewrite the (M HD) problem
in the following way:

—Au+ VP = f — (curlu) x u+ (curld) x d in Q,

divu=~h in €,

uxn=0 onl,

P=PFP only and P=PFPy+c¢ only,

(u-n,)r, =0, 1 <i<1,

and
curlcurlb =g + curl(u x b) in Q,

divb=0 in ,
bxn=0 onl
(b-m,1)r, =0, V1I<i<I.

The following result can be improved in the same way as in Corollary 5.10 by considering a data Py less regular.
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Theorem 6.3 (Regularity W7 (Q2) with p > 2). Let p > 2 and r = 33Tpp' Suppose that f,g € [Hgl’p/(curl,Q)}’, h =0,
Py e Wlf%’r(l“) with the compatibility conditions (5.27)-(5.28). Then the weak solution for the (MHD) system given by
Theorem 6.1 satisfies

(u,b,P) € WH"P(Q) x WHP(Q) x W""(Q).
Moreover, we have the following estimate:

lwllwri,e )+ 10l 1 ) HIPllwrr @) <C(Hf”(HS’,p’(erQ)), +||g||(HS/’p/(curl,Q))’ N Pollyy1/vt o (ry) (6.17)

Proof. Since p > 2, we have [HS/’p/(curl, Q)] < [HY?(curl, Q)] and W'~Y/""(I') < H~Y*(I'). Thanks to Theorem 6.1,
there exists (u, b, P,c) € H'(Q) x H' () x L*(Q) x R solution of (MHD). By using the embedding H'(Q) — L°(Q),
it follows that (curlw) X u and (curlb) x b belong to L%(Q) To apply the regularity of Stokes problem and obtain
weak solutions (u, P) € W1?(Q) x W'7"(€), we must justify that the RHS f — (curlu) x u + (curld) x b belongs to
[Hgl’p/(curl, Q)]’. Similarly, to apply the regularity of the elliptic problem (Ex) and obtain a solution b € W12(Q), we
also need to justify that the RHS g+ curl(u X b) belongs to [Hsl‘p/ (curl, Q)]’. As a consequence, we distinguish according

to the values of p the following cases:

(i) If p < 3, then f — (curlu) x u + (curlb) x b € L¥2(Q) < L35 () = L"(Q). Since L"(Q) — [H} " (curl, Q)]',
thanks to the regularity of the Stokes problem (Syr), see Proposition 3.2, we have that u € WP (Q) and P € W' ().
Since curl(u x b) = (b- V)u — (u - V)b, we have with the same argument above that curl(u x b) € [Hgl’p/ (curl,Q)]’. Tt
follows that g + curl(u x b) € [HS,’pl (curl, Q)]". Moreover, g + curl(u X b) satisfies the compatibility conditions (5.27)-
(5.28). Consequently, thanks to the regularity of the elliptic problem (£x7), see Lemma 3.4, we have that b € WP(Q).

(ii) If p > 3, from the previous case, we have that (u, b, P) € W3(Q) x W'3(Q) x W3/2(Q). Therefore, (u,b) €
L(9) x L), for any 1 < ¢ < co. Then, (curlu) x u € L™(Q) for all 1 < m < 3. In particular, we take % = % + %
with 3/2 < m < 3. So, we have that (cl:u/rl u) X u € L;TPP(Q) — [Hgl’p’(curl, 2)]’. Using the same arguments, we obtain
that (curld) x b € L3+ (Q) — [H P (curl,Q)]’. Then, the required regularity for (u,b, P) follows by applying the
regularity of the Stokes problem (Sy’). Further, we have u x b € LY(Q) for any 1 < t < oco. In particular, taking t = p
with 3 < ¢t < oo, we have that u x b € L?(2). So, due to the characterization of the space [HS,’pl (curl, Q)]’, we have
curl(u x b) belongs to [HS/’P/ (curl, Q)] and we finish the proof by applying the regularity of the elliptic problem (Exr).

O

6.3 Strong solution: LP-theory, p >6/5

In this subsection, we study the existence of strong solutions for more regular data. The following theorem gives the
regularity W% (Q) with p > 6/5.

Theorem 6.4 (Regularity W2*(Q) with p > g) Let us suppose that Q is of class C*' and p > g. Let f, g and Py satisfy
(5.27)-(5.28) and
1
FeL’(Q), geL’(Q), h=0 and P,e W' »?().

Then the weak solution (u,b, P) for the (MHD) system given by Theorem 6.1 belongs to
W?2P(Q) x W2P(Q) x WHP(Q) and satisfies the following estimate:

||u||W2,p(Q) + HbHW?,p(Q) + HPHWLP(Q) < C(HfHLp(Q) + ”gHL:D(Q) + ||P0||W17%‘p(r)) (6.18)
Proof. To start the proof, the idea is to use the regularity result for weak solutions in W?(Q) with p > 2 given in Theorem
6.3 instead of the weak solutions in the Hilbert case H'($2). Observe that if 6/5 < p < 3/2, we have 2 < p* < 3, where
p% = % — %. Now, denoting r(p*) = h
that f € L"?)(Q), g € L"®)(Q) and Py € W'=Y/ )(T) Since L™?)(Q) < [H" ® (curl, Q)] and p* > 2,
we deduce from the regularity result of the (/D) problem (see Theorem 6.4) that (u,b, P) € WP (Q) x WP () x
WT()(Q). Then, we have the following three cases:

%, we obtain that r(p*) = p. Then, we have from the hypothesis of this Theorem

(i) Case ¢ < p < 2: We have (curlu) x w € L*(2) with 1 = % — 1. Since t > p, it follows that (curlu) X u belongs
to LP(2). The same argument gives that (curld) x b belongs to LP(Q2). Consequently, thanks to the existence of strong
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solutions for the Stokes problem (Sxr) (see Proposition 3.2), we deduce that (u, P) € WP (Q) x W'P(Q). Since curl(u x b)
belongs also to L*(Q) with ¢ > p, we deduce from the regularity result of the elliptic problem (£x7) (see Theorem 3.3) that
bc WP(Q).

(ii) Case p = 2: We have in this case p* = 3. From above, we know that (u,b, P) € W"?(Q) x W?(Q) x WI%(Q)
Since W3(Q) «— L(Q) for any 1 < ¢ < oo, we deduce that (curlu) x u and (curld) x b belong to L' (Q) with
% = % + %. Choosing ¢ > 3 gives t > % Thanks to the regularity of the Stokes problem (Sx), we have that (u, P) €
w23 () x whi (). Using the same argumengs, we have curl(u x u) € L*() with ¢t > 2. Then, we apply the regularity
of the elliptic problem (Exr) to obtain b € W22 (Q).

(iii) Case p > 2 : We know that (u,b) € W22 (Q) x W22 (Q). Then, (u,b) € LY(Q) x LI(Q) with 1 < ¢ < co. We
deduce that the terms (curlu) x w and (curlb) x b belong to L*(Q2) with 1 <t < 3. So, we have the following two cases:

(a) If 2 < p < 3, we have (curlu) x u, (curlb) x b and curl(u x b) belong to L?(Q2). Thanks to the regularity of (Sx)
and (Ex), we deduce that (u,b, P) belongs to W*P(Q) x WP(Q) x W'P(Q).

(b) If p > 3, from the above result, we have (u,b, P) € W>%75(Q) x W*?7¢(Q) x W"?7¢(Q) with 0 < £ < 2. Observe
that (3 —e)* = 22220 > 3. This implies that w € L>®(Q) and b € L®(). Since curlu € W'375(Q) — L®=97(Q),
it follows that (curlu) x w and (curld) x b belong to L®™9)" () — L3(Q). Again, according the regularity of Stokes
problem, we have (u, P) € W3(Q) x W3(Q). Similarly, curl(u x b) € L*(Q) and the regularity of the elliptic problem
(Enr) implies that b € W3(Q). Finally, using the embeddings W?3(Q) — L*(Q) and W3(Q) — L9(Q) for 1 < ¢ < oo,
all the terms (curlu) x u, (curlb) x b and curl(u x b) belong to L(Q2). To conclude, we apply once again the regularity
of Stokes problem (Sxr) and elliptic problem (Enr).

O

6.4 Existence result of the MHD system for 3/2 < p < 2

The next theorem tells us that it is possible to extend the regularity WP (Q) of the solution of the nonlinear (MIID)
problem for g < p < 2. For this, we apply Banach’s fixed-point theorem over the linearized problem (4.2).

Theorem 6.5 (Regularity W?(Q) with % < p<2). Assume that % < p <2 andlet v be defined by % = %
consider f,g € [Hy P (curl,Q)]', Py € Wlf%’r(l’) and h € WHT(Q) with the compatibility conditions (5.27)-(5.28).

+ % Let us

(i) There exists a constant 81 such that, if

10275 oy + 190 a2 oy + 1Pl =2 )+ [lhr ey < 61

Then, the (MHD) problem has at least a solution (u,b, P,a) € W1P(Q) x WP (Q) x WhT(Q) x RY. Moreover, we have

the following estimates:

lull .., o+ SO ey 1951775 ey FI POl 1+ Bl ) (6.19)

lep(sj)» |b”wl:p(s)

HPHWLT(Q)g Cl(l + C*n)(H‘fH[Hgl’pl(curl,Q)]/+HgH[HS/’p/(Curl,QH/+||P0||W17%’7'(1")+Hhle'r<Q)) (620)
where 61 = (2C?C*)™ Y, C1 = C(1 + C*n)? with C > 0, C* > 0 are the constants given in (6.25) and n defined by (6.26).

Furthermore, oo = (a1, ..., ar) satisfies

ai:(fyv%'N)Q—/

(curlw) x u - Vg, de +/
Q

(curlb) x d- Vg dw + /(h — Py)VqY -n do
2 r

(ii) Moreover, if the data satisfy that
17 a2 oy + 10 a2 cmmny 1Pl + Wl < 8
for some 62 €]0, 61], then the weak solution of (MHD) is unique.

Proof.

(i) Existence: Let us define the space

Z7(Q) = WP (Q) x WP (Q)
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For given (w,d) € B, define the operator T' by T'(w,d) = (u,b) where (u,b) is the unique solution of the linearized
problem (4.2) given by Theorem 5.7 and the neighbourhood B,, is defined by

B, ={(w,d) € Z2°(Q), [(w,d)||zr(2) <m}, 1>0.
Here Z?(9) is equipped with the norm
[(w, d)||zr @) = [lwllwir@) + ldlwirq)-

We have to prove that T is a contraction from B, to itself. Let (wi,d1), (w2,d2) € B,. We show that there exists
0 € (0,1) such that:

[T (w1, dr) — T(w2,d2)|| zo(q) = [[(w1,b1) = (u2,b2)[| 25 () < O [l(w1,d1) — (w2, d2)|| 25 (q) (6.21)
Thanks to Corollary 5.8, each (u;, bi, Pi, c'), i = 1,2, belongs to WP(Q) x WHP(Q) x W"(Q) and verifies:

—Awu; + (curlw;) X u; + VP; — (curlb;) x d; = f and divu; = h in Q

curlcurlb; — curl(u; x d;) = g and divb; =0 in

uixn=0and b, xn=0onT (6.22)
Po=FPyonlgand P, =Py + c§-i> on I';

(uwi-m,)r; =0and (b; -m,1)r; =0, V1<j< [

together with following estimate for ¢ = 1, 2:

(i )11, o C (1 + Jewrlawill 3+ ||di||WL%(Q)) (n+a+ ||curlwi||L%(§j)- ||di||W1,%(Q))72) (6.23)
Where 71 = H'fH[HS/’p/(curl,Q)]’ + ||g||[H6/‘p/(curl,Q)]’ + HPOHWI—%J«(F) and ’72 = Hhler(Q)

Next, the differences (u, b, P,¢) = (u1 — uz2,b1 — ba, P, — P», cl — 02) satisfy

—Au + (curlw;) X u+ VP — (curlb) x dy = f, and dive =0in Q
curlcurlb — curl(u X d1) = g, and divb=0in Q

uxn=0andbxn=0onl (6.24)
P=0only and P=c¢; only

(u-m,1)r; =0and (b-n,1)r, =0 V1< j< T

with f, = —(curlw) X w2 + (curlbs2) X d and g, = curl(us x d). Observe that f, and g, belong to [Hgl’p/ (curl, Q)]
Indeed, Since ua,bs € WHP(Q) < LP (), curlw € L%(Q) and d € Wl’%(Q), then (curlw) X uz and (curlbz) X d
belong to L™(2) — [HS/’p,(curl, 2)]". Besides, uz x d € L”(Q) so curl(uz x d) € [Hg,’pl (curl, Q)]’. Moreover, since g,

is a curl, then it satisfies the conditions (5.27)-(5.28). Hence, we apply the Theorem 5.7 and we have the estimate:
108,z ey < €O+ lewrtaon ]|y il g o )l cnrny + 1920 115 e )
By the definition of the norm on [Hg,’pl (curl, Q)]’, the Holder inequality and the embeddings

WP(Q) < LP" (Q) and WP(Q) — W2 (Q) < L3(Q),

it follows:
||f2||[Hg’,p’(curLQ)]/ < [[(eurlw) x uz| - o) + [[(curlbs) x dl| ;- (g,
< ||cur1w\|L%(Q) llwz |l o= @t [[curl b2HLP(Q) Hd||L3(Q)
< C(Cw ||w||w1,p(g) HuQHWLIJ(Q) +Ca HdHWLP(Q) ||b2HW1wP(Q))
and

HQQH[HS’,H(cuer]/ = [luz x dHLP(Q) < uzll g pr Q) HdHLB(Q) < CCq Hu?”leP(Q) HdHWLp(Q)
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3 < Cu Hw”Wl«P(Q) and ||dHL3(Q) < Cq ||dHW1~P(Q)'

where C,, > 0 and Cy > 0 are respectively defined by chrlw||L @

Therefore, recalling that (w1, d:1) belongs to B, we have:

lellwie@) + IBlwirg < CO+CT[[(wi, )l zo@)(Cullwllwieq) + Calldllwi@) [[(@2; 02)] 26 o)
< CO+CC [[(w, )| zp (o (w2, b2) ]| 20 (@)

with C* = Cy + Cq. Combining with (6.23), we thus obtain:
lellw @) + 1Blwrr@) < CLC7 (W, d)ll 2o(q) (11 + (1 + Cn)y2) (6.25)

where C1 = C(1 + C*n)?. Hence, if we choose, for instance:

n=(C)((20C"7)"5 —1) and v = 71 + 72 < (20C™) " (6.26)
then C1C*(v1 + (14 C*n)y2) < 5. Therefore T is a contraction and we obtain the unique fixed-point (u*,b*) € W () x
W P(Q) satisfying

||(U*ab*)||zp(9) < C(l +C" ||('“'*>b*)||zp(9) ) (’Yl +(@1+C" ||(U*7b*)||zp(9))’72>

Next, since (u*,b*) € B, we obtain

[(w", 0" 200y < C(1+C™ ) (71 + (1 +C™n)y2) < Cry (6.27)
which implies the estimate (6.19):

Now, we want to prove the estimate for the associated pressure. Taking the divergence in the first equation of problem
(MHD), we have that P* is a solution of the following problem:

AP* =div f +div((curld*) x b* — (curlu™) x u*) + Ah in Q,
P*=Py onlg and P*"=Py+c¢ onl;
with
1Pl 1.r () < IIdiv Fllyy—1.r (@) + ldiv((curlb) x b* — (curlu®) x w*)|lyy—1.r(q) + 1Al —1.r @) + 1 Pollyyi-1/r.r ()
Following the same calculus as in the proof of Theorem 5.7, we obtain
1P wir oy < C(L+C™n)* (11 + (14 C n)ra).
which implies (6.20) and the proof of existence is completed.
(ii) Uniqueness:
Let (u1,b1, P1) and (u2, b2, P2) two solutions of the problem (MHD). Then, we set (u, b, P) = (u1 —u2, b1 — bz, P1 — P»)
which satisfies the problem:
—Au+ (curlui) X u+ VP — (curlb) x by = f, and divu =01in
curlcurlb — curl(u x b;) = g, and divb=0in Q
uxn=0andbxn=0onl
P=0onIy and P = ail) — a?) on I';,
(u-n,1)r, =0and (b-n,1)r, =0 V1<i< ]

where f,,9, € [Hgl’p,(curl, Q)]’ are already given in (6.24) and satisfy the hypothesis of Theorem 5.7. Applying this
theorem, we have the estimate

1.3 )(Cw HU’HWLP(Q) ||u2HW1,p(Q) +Cq HbHWLP(Q) ”bQ”leP(Q))

w2(Q)
<Cc@a+cr ||(u1,b1)||zp(m)0* ||(u2:b2)||2p(sz) Il (w, b)”z;:(xz) :

From (6.27), we obtain that:

(w0, 0)ll zp () < C(1 + ||cur1u1||Lg(Q) + (11l

| (u, b)”zv(g) <C(1+C"Ci)C"Cry || (u, b)”zp(g)
Thus, for v small enough such that
Cl+C"Ciy)C"Ciy < 1

we deduce that w = b = 0 and then we obtain the uniqueness of the velocity and the magnetic field which implies the

uniqueness of the pressure P. O
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7 Appendix

We begin this section by giving another proof of Theorem 5.11.

A second proof of Theorem 5.11: Let A > 0, and let us assume f,,g, € D(Q) such that f, and g, respectively
1

converge to f and g in LP(Q), and Pg € C*(I") which converges to Py in Wl_E’p(F).

We consider the problem: find (uy, by, Py, ¢}') solution of:

—Auy + (curlw) x ux + VP, — (curlby) x d = f, and divuy =0in Q

curlcurlby — curl(ux x d) =g, and divby =0in Q

Py =P, only, P\=P)+c onl; (7.1)
uyxXxn=0, byxn=0 onl

(u,\-n,l)pi:(), <b)\~n,1>ri:0,V1<i<[

Note that, since f,,g, € D(f), in particular they belong to L%(Q) Thus, applying Theorem 5.1, we have (ux,by) €
W25 (Q) x W25(Q) < HY(Q) x H'(Q) — L5(Q) x L(Q). Therefore, (curl w) x uy, (curlby) x d and curl(uy x d)
belong to Lg(Q) — LP(). Hence, using the regularity results of the Stokes and elliptic problems, we obtain that the
problem (7.1) has a unique solution (uy,bx, Py) € W2P(Q) x W*P(Q) x WP(Q) which also satisfies the estimate:

Hu)\||w2-,p(ﬂ) + HbA'lWZvP(Q) + HP)\HWLP(Q)
I
<C Py 2 1
s Use ”f)\HL:D(SZ) + HgAHLP(SZ) + |40 Wl—%,y(r) + Z ;| + [|(curlw) x U/\”Lp(sz) (7.2)
i=1

+ l[(eurlbs) x dll o o, + leurl(s x d) o) )

with Csg = max(Cs, Cg) where Cgs is the constant given in the Proposition 3.2 and Cg the constant given in the Theorem
3.3. We now want to bound the right hand side terms [|(curlw) X uxl| 1, (g, [[(curlbx) X d| 5y, [lcurl(ux x d)||pp g,
and ZLI |c}| to obtain the estimate (5.99). In this purpose, we decompose curlw and d as in (5.4)-(5.5).

—

Let € > 0 and p./2 the classical mollifier. We consider y = curlw and d the extensions by 0 of y = curlw and d in R?

respectively. We take:

curlw = y] + y5 where y{ = § * p./2 and y5 = curlw — yJ

” (7.3)
d = dj + d5 where di = d * p./» and d5 = d — dS
For each term, we start by bounding the part depending on d5 (resp. y5), and then we look at df (resp. yj).
(i) Estimate of the term |[|(curlw) X wux||zp (o
First, following the definition of the mollifier, we classically obtain:
W2l g o = ly =9 pepell g ) <€ (7.4)
Then, since we have WP () < L?" (Q) and the Hélder inequality, we obtain:
I % Loy < N85I, g g Tl ) < Ca w5l sl wenco (7.5

where C is the constant related to the previous Sobolev embedding W27 () < LP" " (Q). Thus, injecting (7.4) in (7.5),
it follows:

||y§ X u%”LP(Q) < Che |‘u>\HW2xP(Q)
Now, for the term in y{, we apply the Holder inequality to obtain:
”yi X uXHLP(Q) < HyiHLm(Q) Hu>\||Lq(Q) < HyHL%(Q) Hp6/2||Lt(Q) ||u>\||LQ(Q)

with m, ¢ > p such that % = % + % and t > 1 defined by 1+ % = % + % Note that this definition imposes m > %, and we
can take in particular m = 3, and hence ¢ = p*. Since, following the properties of the mollifier, there exists C. > 0 such
that, for all ¢ > 1:

Hp6/2HLt(Q) < Ce (7.6)
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so we have
95 % walln ) < Cellyl, g o sl @)

(ii) Estimate of the term ||(curlby) X dl|;,q): As previously, we have from the definition of the mollifier:

<e (7.7)

ldall 0.4 g = Hd —drpe| g

Then, combining the Holder inequality and the Sobolev embedding whi (Q) — L3(Q), we have:
[[(curlby) x d;”LP(Q) < [leurl bl p- Q) Hd;||L3(Q) < 025||bAHW1,p*(Q)
where C> is the constant related to the Sobolev embedding whs (Q) — L3(Q). We finally recall the Sobolev embedding
W2P(Q) — WP (Q) to obtain:
[[(curlby) x d%HLP(Q) < C2Cse[|ballyy2.(q) (7.8)

with Cs the constant related to the Sobolev embedding W2?(Q) < W (Q). It remains to bound the term in d.
Applying the Holdér inequality, we have:

[[(curlby) x diHLP(Q) < chrlkaLq(Q) ||di||Lm(Q) < chrlkaLq(Q) ||dHL3(Q) ||P€||Lt(9) (7.9)

with m,q > p such that % =14 1andt>1suchthat 1+ L1 = % + % Note that these relations require m > 3, then

m q m

% < % + % so g < p*. Therefore, we have the Sobolev embeddings:

W(Q) < Wh(Q) < L (Q)

compact continuous
hence there exists n > 0 and C5 > 0 such that
[BAllw1.a 0y < 1 lBAllw2.0(0) + Cn oAl Lo+ (o) (7.10)
Injecting (7.10) in (7.9), combining with (7.6) and the Sobolev embedding whi () <= L*(Q), we obtain:
eurlba) x dil ) < C.Ca ldll 1 3 o) G110l ) + o 1Bl )

(iii) Estimate of the term |curl(ux x d)||;,q):

Since divuy = 0 and divd = 0 in §, then curl(uy x d) = (d- V)uy — (ux - V)d. We thus bound these two terms.

e Estimate of the term |[(d- V)uxllzs(q):
The reasoning is exactly the same as for (i7) with curl by replacing by Vuy. Then we have:

(s - Vsl gy < CaCie [urllypn o

and

I{dy - V)tallpo(ey < C2Celldll g o) (T lluallwzn @) + Cn llallLor o)

e Estimate of the term [|(ux - V)d|| ;o)
Again, the reasoning is the same as for (7), with Vd instead of curlw. Then we have:
fl (wx - V)dSHLP(Q) < Che ||u>\||w2,p(§z)
and

(e - V)il pogy < Celldll g o 1uallLo @)

Q)
(iv) Estimate of the term Y/_, |¢}:

With a triangle inequality, we have:
e < [(Fx, Ve )| + (Pe, Vg - n) +|/(curlw> x ux - Vg, d
Q
+ | / (curlby) x d- Vg, dul
Q

We can’t directly bound | [,,(curlw) x wx - Vg;" dz| and | [,,(curlby) x d - Vg dz| with an Hélder inequality: we must

use again the decomposition of curlw and d in (7.3).



Appendix 49

¢ Estimate of the term | [, (curlw) x u, - VaV dxl|:
From (7.4), the Sobolev embedding W2P(2) < LP"" (Q) and the Hélder inequality, we obtain:

€ N € N
[ v xun-al dol < sl Tl o |V

Lr'(Q)
<O lwlwera ||V, o
with C) defined in (7.5). Next, applying an Hélder inequality, we have:
|/Qyi x ux - Vgl dz| < HyiHm(Q) ||UA||LP*<Q) quZN L™(Q)
<ol 3 g 72 ey T 2 oy |9 o
< Ce HyIILg(m luxllLee () quiN Lm(Q)

with m, ¢ > p such that % + p% + % =1 and ¢t > 1 such that 1+ % = % + %, and Ce already defined in (7.6).
e Estimate of the term [, (curlb,) x d- Vq;" da:
Again, combining (7.7), the Sobolev embedding W??(Q) < W" (Q) and the Holder inequality, we have:

| feurtb) xds - VaY dal < fleurlba o 51,5, [V

L2(Q) P (Q)
< Cse ||Vg ’Lp’m) 1BAllw2.0 ()
where Cs is defined in (7.8).
Now, we look at the part with d$, with the Hélder inequality:
|/Q(curlbk) x di - 9l de] < flourlb gy 1L [V

N
< 0allwr.acay el ooy 19er2l oo [V o

with ¢, m, a > p such that % + % + é =1and ¢ > 1 such that 1+ % = % + % In order to recover (7.10), note that,
taking « such that 1 — é = %7 we obtain the same assumptions on ¢ and m. Therefore, since we can take the same

q as in (7.10), we apply it with (7.6) to obtain:

| / (curlby) x ds - Vo da| < C.Cs ||, (01162 gy ey + C B3] )
Q

HVqZN

s [79
2 (Q) Lo(Q)

Finally, noting that there exists Cyq > 0 such that, for all m > 1, HquW
that:

| Lm(9) < (4, we obtain from the previous calculus

I
A A
>IN <G (13 lwnien + || -0

) +eCh HUAHpr(Q) +€Cs ||b/\||w2,p(g)
i=1

(T

+1CCa Hd”wl ||b>\||W2~P(Q) + Ce chrlw||L%(m llwall o Q)

3

2(9)
+ CoCeCaldll 1.5 g 1930 e )-

Then, injecting (i) — (4v) in (7.2), and taking € small enough such that:

6(0203 + max(2CCy, chcg)) <

=

and 7 such that

CC:C. < 1

nlldl s g ;

where C' > 0 denotes the constant C' = (1 + ICy), we obtain

[urllwzp @) + 10Allw2p @) + 1PAllwiso)

< Cs[CUI Aoy + 193l oy + |

A
Py le—%,p(r)) (7.11)

+ (C1 420028 ] 5 o) + CeClleurtwl] g Y (sl @) + 193] @)
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Applying the estimate (5.86) in (7.11), we finally obtain the estimate:

luxllwzp o) + 102 llw2p @) + IPAllwe

< Cso (1 sloiy + 19allo + [P 1os, . )[C+CaCr(Cct+20CaCh) dll 0

| :
WP 2

(@)
+CC- chrl'w||L%<Q) ) (1 + ||Curlw\|L%(Q) + Hdel’%(Q) )] (7.12)

< Csp(I1fallr) + 19:llLra) + HP&HWI,%,I, max (€, C3CyC.(1 4+ 20CaC.), OC)

()
2
< (14 leurlwll g g, )

where C is the constant of the estimate (5.86) and C5 is defined in (7.8).

To conclude, from the estimate (7.12) we can extract subsequences of ux, by and Py, which are still denoted wy, by and
Py, such that:

uy — u and by — b in W2’1"(Q)7 Py, —~ Pin WLP(Q)

where (u, b, P) € W2P(Q)xW?2P(Q)x WP (Q) is solution of (4.2) and satisfies the estimate (5.99).
Next, we give here the proof of Corollary 5.12 which is the extension of the previous result to the case of non-zero divergence
condition for u.
Proof of Corollary 5.12: We proceed with the same reasoning as in the Corollary 5.8. We recover the solution of a

linearized problem with a vanishing divergence by considering the Dirichlet problem:

Ab=hinQandd=0onT
and setting z = u — V6, thus (z,b, P,¢) is the solution of (4.2) in the Theorem 5.11 with f and g replaced by f =
f+ Vh— (curlw) x V8 and g = g + curl(V0 x d).

Indeed, the assumptions of the Theorem 5.11 are satisfied: since V6 € W2?(Q) < L*" " (Q) and curlw € L3 (), then
(curlw) x VO € LP(S2). Moreover, we have by hypothesis Vh € LP(Q2) so f € LP(Q). In the same way, we have § € LP(Q)

and since we only add a curl to g, then g satisfies the conditions (5.27)-(5.28). Hence, we recover the estimate:

HZHWZP(Q) + ||b||w2,p(g) + HPHWIm(Q)

<Cr (1 lleurtwll g o+l 1 g o) ) (Flr + 18l + IRl g ) i
We must bound || f||zr o) and lgllzs(q) term by term:
e Applying the Hélder inequality and the Sobolev embedding W2P(Q) — 2 (©2), we have:
”}”LP(Q) < H-f”LP(sz) + HVhHLP(Q) + chrlw”L%(Q) ||V6HLP**(Q) (7.14)
<5y + Dol oy + Ca lewrtaoll g oy |
where C; denotes the constant of the Sobolev embedding W2 () < LP"" (Q).
e Note that div VO = Af = h, thus we rewrite curl(V0 x d) = —hd + (d - V)V — (VO - V)d. Thus, we have:
19l e (o) < 9l (o) + 1hdll L) + (@ V)VO| Ly () + (VO - V)dl Lp(q)
< lgllzaey + Wellzoe+ oy Il ooy + Il oy 100w oy + 98 e o 194l 5. (7.15)

< lglloga) +202Cs oy Nl 1, o) + Ot Dellwrooy el

3
’2

()

where C2 and C3 are the constants respectively related to the Sobolev embeddings ng(ﬂ) — L3*(Q) and
WLP(Q) — LY (Q).
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Hence, combining (7.14) and (7.15) with (7.13), it follows that:

||ZHW2=P(Q) + HbHWQxP(Q) + ||P||w1,p(g)

2
< Cr (1t fleurlwll g el g ) (1 oy + 190z + 1700 ot

Bl oy (1+ O lleurlw] g 4 (20205 +C) [l .z, )

2
<COr (14 fleurlwl| g ol g o) (1o +gllo + 126 us,

()

+ max (1,205C5 + O ) [l U+ lleurlell g il g )
Finally, we use triangle inequality and we get the estimate (5.106). d
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