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operator of order o € (1,2). These equations are motivated by two distinct applications:
a dune morphodynamics model and a signal filtering model. The key to study these
numerical schemes is to split the anti-diffusive operators into a singular and non-
singular integral representations. The problem is then expressed as a system of low

Iéi{lvngfiin_diffusion order differential equations and a local discontinuous Galerkin method is proposed for
Fractional anti-diffusion these equations. We prove nonlinear stability estimates and optimal order of convergence
Local discontinuous Galerkin methods O(Axkt1y for linear equations and an order of convergence of O(AX**1) for the nonlinear
Stability problem. Finally numerical experiments are given to illustrate qualitative behaviors of
Convergence

solutions for both applications and to confirme our convergence results.

Numerical simulations © 2019 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we are concerned with the numerical solutions for one-dimensional nonlocal scalar conservation law of
the form:

ur+ (f(w) —ux+ Jux)y=0, xeR, >0,

(1.1)
u(0,x) =ug(x), xeR,

where the unknown u depends on the space variable x and the time variable t. In (1.1), f : R — R is a continuous function,
J is the anti-diffusive nonlocal operator and ug : R — R is the initial datum.

This kind of equation appears in the formation and dynamics of sand structures [17,18] and they are also used as a
filtering model [4]. They are given as follows.

Dune morphodynamics model. In this case, we have f(u) =u?/2 and the equation is given by

2
ut+<u7—ux+3d[ux]> =0, xeR, t>0, (12)
X
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where the nonlocal operator is defined as follows: for any Schwartz function ¢ € S(R) and any x € R,
X
_1
eI = [ w-erpeds. (13)
—00

The operator dx.7%[ux] can be seen as a fractional Laplacian of order 4/3 since it has been proved that [3]

2 1 3
F(@x T uxD) () = —47r2r(§> (5 - isgn(&)%) &3 F ) @),

where I is the gamma function and F denotes the Fourier transform.
This model appears in the work of Fowler [17] and describes the evolution of sand dunes in a river flow.

Signal filtering model. For this application f =0 and the equation is given by

U — Uxy + T [Uux] =0, xeR, t>0, (1.4)

where the nonlocal operator is a fractional Laplacian of order o € (1, 2). Thanks to a Taylor-Poisson’s formula and Fubini’s
theorem we can rewrite the nonlocal term as follows:

Tlelx) = C(A)/ |z|_ktp(x —2)dz withA=a—-1€(0,1) (1.5)
R

This kind of equation has been proposed for signal filtering: it performs at the same time noise reduction (diffusion opera-
tor) and contrast enhancement (anti-diffusion operator) [4].

Note that in what follows, 7 refers both to the operators 7° and J' d

Equation (1.1) consists of three different terms: nonlinear convection f(u), linear diffusion —afu and fractional anti-
diffusive operator dyxJ[ux]. The main characteristic of these equations is the nonlocal operator which has a deregularizing
effect on the initial data. Fortunately, these instabilities are controlled by the diffusion operator —a,%u which ensures the
existence and the uniqueness of a smooth solution [3,4]. We then always assume that there exists a sufficiently regular
solution u(t, x).

Besides the above cited, partial differential equations with nonlocal or fractional operators are widely used to model
scientific problems in finance, mechanics, crow dynamics, traffic flow model etc. [6,5,21].

Therefore, several numerical methods have been suggested in the literature to overcome the difficulties faced by nonlocal
equations. Droniou [16] used a general class of difference methods for fractional conservation laws, Zheng, Li and Zhao
[31] proposed a finite element method to solve space-fractional advection equations. Deng [14] analyzed a finite element
method for the numerical resolution of the space and time fractional Fokker-Planck equation. Li, Huang and Wang [20]
used a Galerkin finite element method and an implicit midpoint difference method to approximate the nonlinear fractional
Ginzburg-Landau equation. Meerschaert and Tadjeran [22] studied finite difference approximations of fractional advection
dispersion flow equation. Bueno-Orovio, Kay and Burrage [9] introduced Fourier spectral methods for fractional-in-space
reaction-diffusion equations. Safari and Chen [24] proposed a coupling of the improved singular boundary method and dual
reciprocity method for multi-term time-fractional mixed diffusion-wave equations. Recently Vong and Lyu [26] studied a
second order finite difference schemes for spatial fractional differential equations with variable coefficients.

The Discontinuous Galerkin method (DG hereafter) is a finite element method which uses a completely discontinuous
piecewise polynomial space for the numerical solution and the test functions. Advantages of DG methods are their higher
order convergence property, their great flexibility in mesh construction, their easily handling of complex geometries, as
well as its efficiency in parallel implementation. However, the main challenge in this method is based on the choice of the
numerical flux which is essential to ensure the stability and accuracy of the scheme.

For the DG methods, recent works have been proposed to deal with equations involving fractional operators: Xu and
Hesthaven [27] applied the local discontinuous Galerkin method to fractional convection diffusion equations with a frac-
tional Laplacian of order « € (1,2). Mustapha and McLean [23] studied a discontinuous Galerkin method for fractional
diffusion and wave equations. Cifani, Jakobsen and Karlsen [10] studied fractional degenerate convection-diffusion equa-
tion (@ € (0,1)) and, Deng and Hesthaven [15] a local discontinuous Galerkin method for fractional diffusion equations.
Cockburn and Mustapha [11] investigated a hybridizable discontinuous Galerkin method for fractional diffusion problems.
Aboelenen and El-Hawary [1] developed a nodal discontinuous Galerkin method for the linearized fractional Cahn-Hillard
equation. Recently, Ahmadinia, Safari and Fouladi [2] analyzed a local discontinuous Galerkin method for time-space frac-
tional convection-diffusion equations.

For equations like (1.1), few numerical methods have been developed up to now: finite difference method [3], split-step
Fourier method [8] and finite element method [7] have been used to perform numerical simulations for the Fowler equation
(1.2). More recently [19] proposed finite difference schemes for fractional water waves models.
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We propose in this paper to develop a DG method for equations (1.1). We consider in particular the Local Discontinuous
Galerkin (LDG hereafter) since the equations contain higher order spatial derivatives. The idea of LDG methods is to rewrite
the equation into a first order system and then apply the discontinuous Galerkin method to the system [12].

The application of the LDG method to the convection-diffusion-fractional anti-diffusion equations allows to get a numer-
ical scheme of order O (Ax**1) (resp. 0(Ax*1/2)) for linear (resp. nonlinear) case. A similar convergence result has been
obtained using only finite element method in [7]. But the advantages of this method reside on the specificity of the DG
methods like their local nature.

In comparison with the results presented in [27] the main difference in this paper resides on the way to control the anti-
diffusive effects of the nonlocal operators. For that, we decompose the fractional operators into a singular and non-singular
integrals. As a consequence, a part of the anti-diffusive fractional operator is controlled with the diffusion term.

To control the fractional operator with the diffusion term, we write the nonlocal terms as follows:

Let r be a strictly positive constant.

Dune model. Integrating by parts we can rewrite 79 as

T = T 1) + T[] (x), (16)

where

Tl = f x— £ BoE) dé

and

r

17
Higloo =3 / X — £ PpE) g+ Bo(x—1),

Signal model: As previously by integrating by parts and since ¢ is a Schwartz function, we rewrite [7° as

T[9'1(x) = C(R) / |$|‘*<p’(x—s>ds+C<x)/|s|‘*¢’<x—s>ds
+c<x>/|sr%o’(x—s>ds

=C() / €17 ¢ (x — £)dE + C(1) A/|5|+1¢<x—s)ds—r‘*¢<x+r)
|E|<r —o0

+CO) —A/ £ (e — £)dE + 1 p(x — )

Therefore, we decompose 7° as

T @' 1) = T @' 1(x%) + T [@l(x), (1.7)
where
Tl = C(h) / £ o (x— ) de
lg]<r
and

T5[91(x) = COIA —/|sr*‘1<p(x—s>ds+ f 1§ Tp(x — &) dt

+C) (e —1) =1 px+1)).

This splitting helps to control the nonlocal term with the diffusion operator: indeed we prove for r well chosen that the
operator 77 is completely controlled with the diffusion operator. Note that the operator /> does not need to be controlled
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because this term will be bounded by the L2 norm of the solution, which is a natural behavior because solutions of these
equations are stable in the sense of (3.1).

The rest of this paper is organized as follows. In the next section, we introduce the semi-discrete LDG method for
equations (1.2) and (1.4) and we prove some useful results. In sections 3 and 4, we prove that both approximations are L2
stable and optimal order of convergence O(Ax*1) for linear equations and an order of convergence of O(Ax”%) for the
nonlinear problem. Finally in section 5, we present numerical experiments to illustrate both applications and we validate
the convergence results stated in the previous section.

2. The semi-discrete LDG method

For numerical simulations, it is more convenient to restrict the problem to a domain 2 = (—1,1) C R. Therefore, we
impose homogeneous Dirichlet boundary conditions in R\ €.

We then choose a partition of @ consisting of cells Ij = (xj,xj+1), j=0,...,M where —1 =Xy <X; <--- <Xy <
Xxm+1 = 1. We denote the cell lengths Axj =x;11 —xj and we define Ax=max Ax;.

j=1,-- M
We denote by Pk(Ij) the space of all polynomials of degree at most k with support on I}, and we define the piecewise
polynomial space V¥ as

V":{v; v, € PK(Ij), j=0,-- ,M}.
Let us finally introduce the operators

+ - —_1 + -
VIj=ve) = v, v =SV +vx;)),
where

E

v(xj )= 11mi v(x).
X— X

J

2.1. Formulation of the LDG scheme

Let us introduce the numerical schemes for the dune morphodynamics model (1.2) and the signal filtering model (1.4).
Taking into account the decomposition (1.6) and (1.7), we introduce two variables v, q, and set

q=—v+ v+ Flu]
_du
T oax’

Signal model. In this case, the linear problem is rewritten as follows

1

il g __
%t =0
q=—-v+F v+ Flul
y=2u
X

Dune model.

The nonlinear problem can be rewritten as
3 9 ?
%‘f‘ﬁf(u)f%:d
q=—v+J{vl+ J5u]
v=2

X

In both cases, we seek an approximation (u, qn, vn) € V¥ x VK x VK to (u,q, v) such that, for any ¢y, ¢q, v € V¥, we

have

Signal model.

X
+1
:’F :O

G, @u)i; = (@n @)1 + G ul
J

@n, 9g)1; = =V, @1; + (T [Val, @)1 + (T3 [unl, @)1, o
X1 .

(Vh, (pV)IJ = _(Uh, §0</)IJ + 1171¢V|X+
J
(un(0, ), (/)V)Ij — (Uo, (/)v)lj =0
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Dune model.

~ n X
(B @)1, — (f (up) + qn. @)1, + (fh% +dn (ﬂu) Ah=0

J
@n. @)1, = —Vh. 991; + (TPVh], @)1, + (T3 unl, @91
A X
(Vha QDV)IJ' = _(ul’h (p\//)lj + uh¢v|xj_;r]
J
(Uh(o, ')7 (Pv)lj - (u07 (Pv)lj =0

To complete the LDG schemes (2.1) and (2.2), we now introduce the numerical fluxes.
For the high order derivative part, it is well known that a good choice to guarantee the stability and solvability is to
consider the following numerical fluxes [12,29]

nj=un®;),  Gnj=0qn(x;) (2.3)
or
@jzuh(xf), nj = qn(x;). (2.4)

At the external boundaries we use

Qu(t, -1 =q; t, - 1) =q; (£, —1); Gu(t, ) =g, (t, 1) =g, (¢, 1); (2.5)
and
Up(t,—1)=0; Uy(t,1)=0. (2.6)

For the nonlinear part ]‘h, any consistent (i.e. /fh (u,u) = f(u)) and monotone (i.e. increasing w.r.t. its first variable and
decreasing w.r.t. its second variable) numerical flux can be used [13]

faluj) = fuE;), u(x)).
2.2. Some useful results
Lemma 2.1. The following result holds for any v € V¥

1. Dune model:
a 1T VG gy < COVA VIR o)
b. 175 V1117 gy < €1 +172) [IViIF, g,
2. Signal model:

a |Vl q) < COM VI ). VA €(0.1/2)

b T IV g < COPTT ) IVIIT, o). VA€ (1/2,1)

T3 g, < Ca—2M) IVl g, VAe©,1)

Proof. 1. Let us study the operators jld and jzd associated to the dune morphodynamics equation (1.2).
a. Using Cauchy-Schwarz’s inequality, we obtain for all x €

X
IR < | [ x= 6172 | 1viig,
—r

<32 vI% g

and by integrating over 2 we obtain

/IJ{'[V](X)IZ <6r'P1viiT -
Q

b. Using the equivalence of norms in finite dimensional spaces, we obtain
51001 = € (172 = G+ D7) IVl + Cr P Ivil gy

Therefore, we have
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d 2 -2/3 -2/3 2
IR = € (1722 4 e D722 vl g
By integrating, we get

[ 1781002 e < e 4 DI .
Q

2. For A € (0,1/2), the proof for the operators 7} and 7; is similar to the previous ones.
For A € (1/2,1), we use again the equivalence of norms in finite dimensional spaces to get the result. O

Remark 2.2. Note that if x &= is a node of the mesh, nothing change for the term 7; but we have to be careful for 7.
Indeed, for example, jzd can be approximated by:

X+
1
T = -3 / =& v @) ds +1r7 v (),

where xy« = x — r. Therefore, using again Young’s inequality and inverse inequality, we obtain exactly the same estimate
proved in Lemma 2.1 where we have assumed that x — r is not a node.
As a consequence, in the remainder of this work, we will not make the difference if x +r is a node of the mesh or not.

Lemma 2.3 (Gronwall lemma [25]). Let y(t), h(t), g(t), f(t) be nonnegative functions such that fOT g(t)dt < M and either

t t
y(t)+/h(5)d55y(0)+/(g(5)y(5)+f(5)) ds, YO<t<T,
0 0
or
d
d—ty(t) +ht) <g®y® + f@t), VO<t<T.
Then
t t
Y(t)+/h(s)ds§eM y(O)—l—/f(s)ds , Yo<t<T.
0 0

3. The linear and nonlinear stability

Let us first review the stability property for the continuous problem. Let u € C((0, T), L2(2)) be a smooth solution to the
initial value problem (1.2) or (1.4). Then, we can prove using Fourier analysis that (see [7] for (1.2) and [4] for (1.4))
lut, 2y < e luoll2g), VE€(©,T) (31)
where w, is a positive constant.
Therefore, we say that the LDG schemes (2.1) and (2.2) are L%-stable if the numerical solutions uy, satisfy
Hup(T, Iz < C(Dluoll2(q)-

The goal of this section is then to prove the numerical stability of the LDG schemes (2.1) and (2.2). For that, let us some
over all j, add the three equations, integrate over t € (0, T) and define two functionals associated to both models (2.1)
and (2.2):

Signal model.
B (Up, Gh, Vi: Qu, @q. ¥v) (3.2)
T T M T M
= [nepwde = [ Y@ eipde~ [ 3w, ot
0 o J=0 o J=1

T T T
—f(qh*(t,—1)90;(—1)—q;(t,1)¢;<l>)dr+/<qh,wq>dt+/(vh,<pq>dt
0 0 0
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T T T
—/(jf[vh],(pq)dt—/(j;[uh],wq)dt+f(vh,¢v)dt
0 0

T
o
0

Dune model.
We first define the functional associated to the linear part

Mz

Il
o

T'm
gy de+ [ 3@ty de
o J=0

J

T'm T M
By (un, an, Vi ¢u> ¢g, wv)—/((uh)t,gou)dt—/Z(qh @)1t — /Z(&h)j [puljdt

o J=0 o J=1

/(qh (t, =D@y (=1) —q, ¢, Dy (U)dt-l-f(% (ﬂq)dt+/(vh Pg)dt

—/(Jf[vhl,goq)dt—f(Jf[uh],wq)dr+/(w,<py>dt
0 0 0
T m

T'm
+/Z(uh,wc)zjdt+/2<ﬁh>j[cpv]jdt
0

j=0 o J=0

then the functional associated to the dune model (2.2) is given by

B (U, G, Vi Qus ©q» 9v) = B Wn, Gn, Vi Pus 9q, Pv)

T M T'm
- / D (Fup), @i de — f > Falgul) jdt
o i=0 o Jj=0

because f(0)=0

Lemma 3.1. For any u, v, q € V¥, the following result holds

(1) Signal Model.
B . _0) — 1 T 2 — 1 2 + t 2 dt
(U,q, viu,v, Q)—2||u( 7')”[_2(9) 2||u0||L2(Q) ||V( ’.)”LZ(Q)
0
T T
—f(Jf[V],V)dt—/(Jf[u], v)dt
0 0
(2) Dune Model.

e . ) = ST NP — t, )20 dt
(u5Q7V7u7V7 Q)—2||U( ’ )||L2(Q) 2||u0||L2(Q)+ ||V( )||L2(Q)

T Ty
- [t~ [ [ 3 (10w - Guu;)d
0 0 o J=0

where ®(u) = [* f(u)du.

67
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Proof. (1) Signal Model.
We set (¢u, ¢q, 9v) = (u, v, —q) in (3.3) and we obtain

T
B . _ _l T. )2 _1 2 MK
(UJLV, u,v, Q)— zllu( ’ )lILZ(Q) 2||u0||L2(Q)+ ||V(t, )”LZ(Q)
0

T T
—f(Jf[v],v)dt—/(Jf[u],v) — (@, —DuT(t, =) —q~ (¢, Hu~ (¢, D)dt
0 0
T m T'm
—fZ((q,uxn,.+(u,qx>1j)dt—/Z(a,-[u],-wj[q]j)dt
o /=0 o J=1
Using the integration by parts (q, ux);; +(u, gx)1; = (u q)|;ﬁ“, the numerical fluxes (2.3) or (2.4) with the external boundaries
j

(2.5) and (2.6) we obtain

((q. unr; + W, qr;) =) [ugqlj+q* ., —Hut, —1) —q (¢, Du~(t, 1)

M=
M=

-
Il
<)
.
Il
_-

(Gjlulj + ajlqlj) + gt ¢, —Dut e, —1) —g~ (¢, Du~ (¢, 1)

[
M=

—.
Il
_-

(2) Dune Model.
As previously, we set (¢y, ¢q, ¢v) = (u, v, —q) in (3.5), and using the numerical fluxes defined in (2.3) or (2.4) we have

T
1 1
B, g, viu, v, =) = I, )iz g, — 5 lluollfz g, +/ v (E, I g dt
0

j=0

T M T'm

- / > (F), uy)dt — / > (Fulul) jdt
o i o J=1
T

T
— / (J{v], vy de — / (T3, v)y, dt
0 0

and since f(0) =0 we get

T T
/ S (F ), o dt = - / [(u)]dt
0

o J=0 j=1

then we obtain
1 1 A
B, viu, v, =) = I, Iz g, — 5 lluollfz g, +/ vt I g dt
0
T T T M
- / (vl vyde - / (F31ul. v)dt + / >~ (1o — Fatub;) dt
0 0 0 J

Jj=

—_

which concludes the proof of this Lemma. O

Theorem 3.2 (Linear stability ). The LDG scheme (2.1) is L2-stable, and its solution satisfies

T
b T oy + [ 1€l g e = CL Dol
0
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Proof. Without loss of generality we assume A € (0, 1/2).
By construction and thanks to (2.1) we have B*(up, qn, vi; @u, ¢q, ¢v) =0 for all @y, ¢q, ¢y € vk,
Then, we have for (¢u, ¢q. ¢v) = (Un, Vn, —qn),

B (up, qn, Vi U, Vh, —qn) =0

From Lemma 3.1, Lemma 2.1 and Hoélder’s inequality, we obtain

T
1 1
ST, )iz gy = 5||uo||§2(9)+f||vh(r, Mo g dt
0

T T
S/HJ]S[Vh(t, Nz llva(t, -)||L2(Q)dt+/||j25[uh(t, Mzl Ve e, l2g) dt
0 0
T T 1 T
A
<C0%) [ 1Vt + [T NI gy det [ 1vnE ) g
0 0 0

T T
A 1
< <c<rf)+z)/||vh<r, Moy e+ € [ e 1 g e
0 0

we then choose r such that C(r%) + % = % and we obtain

T T
1 2 1 2 1 2 2
5||Uh(T,')||L2(Q)—5||U0||L2(Q)+§/||Vh(t, )||L2(Q)dtic()") ||Uh(t, )||L2(Q)dt
0 0

Finally, using Gronwall’s lemma (see Lemma 2.3) with

YO = lun(t, Iz g O = Iva(t, )IF2 g, &) = C() and f(©) =0,
we obtain the following result

1/2

T
||uh(T,~)||§z(m+f||vh(t,-)||%z(mdt < lluollp2ge™’. O
0

Theorem 3.3 (Nonlinear stability). The LDG scheme (2.2) is L?-stable, and their solution satisfies
T
||uh(T,~)||§2(Q)+/||vh<r, M2 g dt < C(D)lluolIfa g,
0
Proof. The proof follows the same lines as the previous Theorem 3.2.
Thanks to (2.2) B4 (up, qn, Vi; ¢u, @q, pv) =0 for all gy, pq, v € VK, then in particular we have BY(uy, qn, Vi; Un, Vh, —qn)

=0.
From Lemma 3.1 we have

T T

1 1

SR (T, )itz ) = 5||uo||iz(m+/||vh<r, ~>||§2(Q)dt—/(Jﬁ[vhl,mdt
0 0

T T
- [ e+ [ 3 (10wl - Gatundy) de=o
0 0 J=1

Thanks to the monotone property of the flux fh (i.e. increasing w.r.t. its first variable and decreasing w.r.t. the second
variable) we have
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4
uj

/ (f00 = Fatwj.u))dx=o,

uj

using now a change of variable we get
ut
[ (60 =ty ) dx =t = Gatun,

uj

and then we have [®(uy)]; — (fh[uh])j > 0.
Therefore we obtain

T T T
! T, )2 ! 2 t, )2, . dt d dt d dt<0
Sun(T, 1 g, = 510l gy + [ 11Va(E N gy dt = [ (Tflval vy de = [ (T5lun). viyde <
0 0 0

We finally conclude the proof by using Lemma 2.1, Holder’s inequality and Gronwall’s Lemma. O

4. Errors estimates

We consider the following special projections P+ and Q into V¥:
For all intervals I, j=0,---,M

/(Piu(x) —uX)v(x)dx=0, VveP ()
I
Pru)) = u(x;), Pru(xj) :u(x}*)

and Q is the standard L% projection defined as

/(Qu(x) —ux)vx)dx=0, Vve Pk(lj)

I
Lemma 4.1. The following result holds

(1) Signal Model.

B5 (P u—u,Ptq—q, Qv —v;P ey, Qey, —Pteq)

T m T m

=/Z((P‘u—u):,P‘eu)zjdtJr/Z(P*q—q, Qey)y;dt
o J=0 o J=0
T m T M
—/Z(J{[QV—V],Qev)z,-dt—/Z(Jf[P‘u—u],Qev):]-dt
o Jj=0 o J=0

(2) Dune Model.

BYP u—u,Ptq—q, Qv —v; P ey, Qey, —PTeq)

T M T um

=fZ<(7>—u —u)f,P—eu>,jdr+fZ(P+q—q,Qev»j dt

o Jj=0 o =0
T m [

—fZ(Jf’[Qv—v],Qem,. dr—fZ(Jf[P—u—u],Qev)l,. dt
o J=0

j o i=0
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Proof. (1) Signal Model.

From

_|_

O\-ﬂ O\-ﬂ O\-ﬂ O\'ﬂ O\'ﬂ e
ME

Using

(3.3) we have

BS(P u—u,Ptq—q, Qv —v;P ey, Qey, —PTey)
(Y (Y

/ Z((P u—u), Pey)y;dt — / Y (PTq—q, (P ew);dt

o J=0

—

(P*q — Q[P eulj

M= T

-
Il
—_

((PTa(=1,0) —q(=1,6) TP ey (—=1,t) = (PTq(1,t) —q(1,£)) " P ey(1,1)) dt

.
I
=)

(3P~ u—ul, Qey)y, dt — /Z(Qv—v Pteg); dt

I'm
(P u—u, (Pteg)r, dt — / > Pru—wy[Pregldt
0 J=1

1= 2

I
=)

J

the properties of the projection P+, Q, we have

(PTq—q. (P ew)x); =0, (Qv—v,Qey); =0,
(Qv—v,Preg); =0, (P u—u,(Pegy); =0

We then

(P~u—u);=0, (Ptq—q);=0
obtain
B(P u—u,Ptq—q,Qv—v;P ey, Qey, —Pteg)

T M (Y

=fZ((7"u—u)t,P‘eu)zj dt+f2(7>+q—q, Qey)y; dt
0 J=

o J=0

T m

j=0
T'm
—/Z(Jf[QV—V],Qev)Ij dt—/Z(Jf[PW—U],Qev)I,- dt
0

=0 5 Jj=0

(2) Dune Model. The proof is similar to the previous ones. 0O

We are now ready to prove the error estimates of our numerical schemes.

4.1. Error estimate for the signal model

M M
(Ptq—q, Qey)r, dr+f2(gv—v,Qem,.dr—fZ(jf[Qv—v],Qem,. dt

71

Theorem 4.2. Let u be the sufficiently smooth exact solution to (1.4) and let up € C1([0, T]; V¥) be the numerical solution of (2.1).
Then, with ey, := u — uy, there holds the following error estimate:

llen(T, )| < CAXF 9k (T, ),

where C =

C(k, A, T) is a constant depending on k, A and T but independent of u and Ax.

Proof. We denote

ey=U—1Up, eg=q—qy ande, =V — vp.

(41)
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We then recover the error equation:

Bs(eu,eq, ev; Qu, Pq, Pv) =0, You,@q, v € vk
We obtain after rearranging terms,
B (W, g%, v Qu, 9q. @v) =B (P u—u, P q—q, Qv — vi 0u. 9q. @),  Yu,@q, oy € VK,
where u® =P~ u —up,q°* =P*Tq—qy and v¢ = Qv — vy, and for ¢, = u®, pq = v¢, ¢, = —q° we obtain
B®, ¢, veut, ve, —q°) =B (P u—u, Ptq—q, Qv — v;u®, v¢, —¢°).
From Lemma 3.1, we have

T T
1d
Bs(uesqevve;ueyvev_qe):f Zdt”u (t)||L2(Q)dt+/
0

™=

e2
||V(t) ||L2(IJ) dt

Il
o

J

T'm T'm
- / D (FFIvEL vE) de — f > (T3], ve)y dt
0 0

j=0 j=0

and from Lemma 4.1

T
B (P u—uPtq—q, Qv —v;ut,vé, —q% = f ((P7u—u), uf) dt
0
M (i
+ [ SPrta-aved- [ Yoiev-vi.ve,d
j=0 o J=0

Mz

(I[P~ u—ul, vé)y;dt

O — g O T—

-
Il
o

Therefore, we have

T M M

T
d M
31Ol g, + / D IVEOIIEg,) — / D (T VO, - / (T3], ve), dt
.=0 -:0 0 =0

J

N[ =

\'ﬁ C—

(P u—u),u )dt—i—/Z(P*q q,ve)p, dt
0
T m T m
/Z(Jf[gv — V1, vO)y, dt—/Z(jzs[P_u—u],ve)Ij dt (4.2)
0

j=0 o J=0

Then using Lemma 2.1, the error associated with the projection operators [27], Cauchy-Schwartz, Holder inequalities and
the initial error ||ug|| =0 (obtained thanks to the last equation of system (2.1)), (4.2) gives

T M
i <T>||L2(Q)+/Z||v O de = €05 [ SO, d
o J=0

1
16

M=

+4 ||j2[u ]||L2(1) ||V ||L2(lj)+/(7)_u_u)taue)dt

.
Il
o

1
16

M=
M= 1

||P+q Q||L2(1)

o\'ﬂ O\-ﬂ

ve IILz(,)+4Zf|I.71[Qv Vg,

j=0}9

.
Il
<}
Il
o

J

f
/
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1 A tm ] T M
e2 Srp— 2 e2
+E/Z||V ||L2(lj)+4/Z||j2['P u—u]lle(,) E/Z”V ||L2(Ij)5
0 0 0

J=0 i=0 J=0

Ot~

M

1

™) Y VeI, + 3 DIVl + COM AR D, | de
j j=0

T
+/ (C(r‘z’\)sz(kHHul,%H +C(r—”)||ue||§2(1j))dr
0

and if we choose r such that C,(r*/?) = ;, we obtain

T M T
%Ilue(T)llfz(Q) % / D IVEOII,) < / (m, |u|k+1,|u|k+z)Ax2<"+”+C(A)||ue||iz(m)dt
o J=0 0
Finally, using Gronwall’s Lemma we get
T m
llu (T)||L2(Q)+/Z||v Oz, dt < Cle A Tl [uler2) A2 O
o J=0

4.2. Error estimate for the dune model

4.2.1. The linear case f =cu
In this subsection we consider the linear problem

ug + (cu — Uy +Jd[ux])x =0

(4.3)
u(0,x) =ug(x).
For the convection term, we opt for the well-known monotone Lax-Friedrich flux [13]
A _ [ul;
fy,uly=cm - |c|7’. (44)

Theorem 4.3. Let u be the sufficiently smooth exact solution to (4.3) and uy, € C'([0, T]; V¥) be a solution of (2.2) with f(u) =cu
and the numerical flux (4.4). With e, := u — up,, we have the following error estimate:

llen (T, )| < CAXF ok Tu(T, )|, (4.5)

where C = C(k, c, T) is a constant depending on c, k and T but independent of u and Ax.

Proof. The proof follows the same lines as the previous Theorem 4.2. The difference here resides on the presence of the
convection term.
As previously, we have

B, g%, veu, ve, —q°) = BY (P u—u, Pt —q, Qv —v;u®, v¢, —¢°),
where u® =P u —up,q¢¢ =P+q—qy and v¢ = Qv — vp,. From Lemma 3.1, we have

T'm

B, g, v U, ve, —g%) = o ||u (T>||LZ(Q>+/Z||v Ol
o J=0
M T m
— | DT v, - / > (TS el v
j=0 o J=0

Ot~ O\-ﬂ

M=

(cu®, (Wi —/Z(C(ue)J - —[u 1)’

o J=0

.
Il
o
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1 T'm T'm
= SOy + [ WOl — [ DL ve,
o =0 o /=0

f

Moreover, from Lemma 4.1, we obtain

M=

—.
Il
o

T'm
et v+ [ 3 S (46)
o J=0

T
BYP u—u,Ptq—q, Qv —v;u®,v¢, —¢°) = /((P‘u — )¢, u®)dt
0

T
o
/2

T'm T'm
Pra-a.v, - [ Yior—vivde— [ SfPmu- v, (47)

M
=0

Finally, as the proof of Theorem 4.2, by using (4.6), (4.7), Lemma 2.1, the error associated to the projections operators [27]
and Gronwall’s Lemma, we obtain for r well chosen

T m T m
el
U (D1 g + f D IVEO IR de + f DS e < CO T fuli, ulis2) A2 0
o i=0 o i=0

4.2.2. The nonlinear case
To deal with the nonlinearity we argue as [27] and we use the following results:

Lemma 4.4 ([30]). For any piecewise smooth function w € L2(2), on each cell boundary point we define
WITH(f W) = Fw))  if [w]#0
KRl ifwl =0,

where f(w) = f(w*, wT) is a monotone numerical flux consistent with the given flux f. Then K(f; w) is nonnegative and bounded
forany (w=, wT) € R. Moreover, we have

K(f";W)EK(f;w,wJF);:!

1 o n
1P @) <k (frw) + Caliwll,

1 - n
—3 [ @Iwl <k (f;w)+ Cellw]?.

To estimate the nonlinear part, we define as in [28]

M M M M
D Hi(fiuup )= /(f(u) — Flup)vedx+ Y ((F@) = fF@m)IvD; + Y _(f@n) — HIvD);

j=0 i=0j, j=0 j=0

Lemma 4.5 ([28]). For H(f; u, up, v) defined above, we have the following estimate:

M

1 _
D H(Fuun v) < = 2k (Frun)VE 4 (C+ Culllviloo + A Hleul B DIV g
j=0

+(C+ CoAx ey IZ) Ax*H!
As in [28] we consider for Ax small and k > 1 the following assumption

[lu —upl] < Ax. (4.8)

Theorem 4.6. Let u be the sufficiently smooth exact solution to (1.2) and uy € C'([0, T1; VK be the discrete solution of the LDG
scheme (2.2). We have for Ax small enough satisfying (4.8) and k > 1,

1
llu —up|| < CAXKtz,
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Proof. Using previous notations, (2.2) and by adding j:fo Z] 0 (f(uh) Ou ) we have for any ¢y, @q, ¢y € vk

Bd(u,q,v;wu,wq,wv)—l’ﬁ‘ (Un, Gn, Vi Qu, Ogs Pv)

T m
= B;i(u,qaV;wu’(/)q,(/)v)—Bf(uh,qh,vh;(/)u,goq,gov) /Z f, (pu
j=0

T m T m T m
—/Z(f(u)[goupjawfz fun). @), dHfZ f[wu])j dt
0 o J=0 0

j=0 j=0

-

T

M
zBf’(u—uh,q—qh,v—vh;rpu,wq,wv)—fZ(f(u)—f(uh),wl,),j dt
o i=0

o\-ﬂ

M T M
> (@ = f@iga) de - [ - (@ - Digal) de
0

j=0 j=0
(i
_d . (-
=5 (u—uh,q—qh,V—vh,wu,goq,qov)—/Z%(f,u,uh,wu)dt
o =0
=0
Setting (¢u, ¢q, ¢v) = (u®, v¢, —q°) we obtain
T m
d,e e .e..e .e ey _ pdp— + ...e e e S F. e
B ,q,viu v, —q ) =B/ (P u—u,P"q—q,Qv—v;u,v",—q )+/ZH,(f,u,uh,u)
o J=0

Using Lemma 3.1, Lemma 4.1 and Lemma 4.5, we obtain

T'm T'm
DRy + [ YW1 de = [ D(TrveLvey, de
o Jj=0 0

j=0

=0

T M 1
- / D (TFML vt + e (frnfutP®
0

.

T M

/((73 u—u, e)dt—i—/Z(PW q,ve);dt

o J=0

T M
—/Z(J1 [Qv —v].v )ljdt_/Z(jz[P u—ul, v, dt
0

=0

—.

+f(c + Calllu® oo + AXMleul B 1172 g + (€ + CoAx™[lew|[5) Ax* dt
0

The terms from the linear parts are analyzed in the same way as the proof of Theorem 4.2. We control these terms using
Lemma 2.1 and error properties for the projection operators [27]. Again the parameter r is chosen in a way that we can
control the operator jld with the diffusive term. For the nonlinear part, we consider Lemma 4.5 and the assumption (4.8)
to control the nonlinear terms. We finally conclude the proof by applying the Gronwall’s Lemma. O

5. Numerical simulations
We conclude this paper by presenting some experimental results obtained using the local discontinuous Galerkin method

(see numerical schemes (2.2) and (2.1)) with different polynomial order for the space discretization, an Euler explicit method
for the time discretization and we take r =0.2.
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Test 1: Numerical convergence. To study the numerical convergence we consider

ur — U + (T [uxl + FFul) =0,  Q=(-1,1) (51)
with the following two initial data

Test 1a: u(0, x) = e~50*+02)%
Test 1b: u(0, x) = e~ 300+04? | o=50(x-0.4)%

We compute the numerical solution of this problem at time T = 0.1. LDG methods based on P¥ polynomial approxima-
tions with k=1, 2 are tested.

Table 1, Fig. 1 and Fig. 2 display the convergence numerical order for both examples. In Figs. 1 and 2 we plot the
logarithm of the error (in norm L2) in function of the logarithm of the number of elements N. The time step is chosen in a
way that the condition At = 8Ax? with 8 < 0.5 is satisfied. The convergence numerical order is then given by the slope of
this curve. For reference, a small line (the dashed line) of slope two and three are added in the figures. We observe that the
numerical rate of convergence is slightly better approximation than two when P! is considered and it is approaching three
when P? is considered.

Table 1
Test 1: Error and numerical rate of convergence for one order polynomial approximations (k =1)
and for second order polynomial approximations (k =2). N denotes the number of elements.

N Error (k=1) Order Error (k =2) Order

40 0.1510 - 0.09520 -

80 0.0247 2.6112 0.0121 2.9760
160 0.0057 2.1157 0.00168 2.8485
320 0.0014 2.0255 0.000251 2.7427

log(Error)
A
T

log(N)

Fig. 1. Test 1a: Convergence curve (solid line) for one order polynomial approximations (k = 1). Dashed line represents a slope of order two. N denotes the
number of elements.

log(Error)

-9 I L L I L
25 3 3.5 4 4.5 5 5.5
log(N)

Fig. 2. Test 1b: Convergence curve (solid line) for second order polynomial approximations (k = 2). Dashed line represents a slope of order three. N denotes
the number of elements.
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Test 2: Dune model. In this example, we simulate using P! approximations the nonlinear dune model

Up — Uy + Uty + e (Tf [ux] + TS ul) =0, xe€Q=(-10,10), te(0,T),
u(()7 X) — e—O.S(X-‘rO.])Z (52)

The numerical result is presented in Fig. 3: the solid line represents the initial data and the dashed line the numerical
solution at the time T = 1. In this simulation, we take Ax=0.2 and At =0.016.

As we expect from the linearized viscous Burger equation, the initial data is propagated downstream but we can see
here in addition an erosive process due to the nonlocal term.

1.2+

1k
0.8
0.6
0.4+

0.2

0

-0.2

-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 3. Test 2: Piecewise linear (P') approximations with N = 100. Solid line: initial data, dashed line: numerical solution at T =1.
Test 3: Signal filtering model. In this example, we consider the following signal filtering equation
U — & Uxx + 1 x(T7 [ux] + F5 [u]) =0
with a = 1.5 and we consider as initial data two Gaussians corrupted by a random noise n(x)
u(0, %) = e—lOO(x—Z/S)Z + e—500(x—3/5)2 +n(x)

Fig. 4 illustrates filtered signal for T =1, € =10, n =1 and N = 100. As we can see, the noise is very well eliminated and
we find again the original signal. The difference with the heat equation is that the shape of the signal is preserved thanks
to the anti-diffusive fractional operator.

Noisy signal vs. filtered signal
T T T

05 1 1 1 1 1 1 1 1 1
o1 02 03 04 05 06 07 08 09 1

Noiseless signal vs. filtered signal
T T T

0

05 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

Fig. 4. Test 3: Top: noisy signal (blue) vs. filtered signal (red); Bottom: noiseless signal (blue line) vs. filtered signal (dashed red line) using P! approxima-
tions. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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