Mathematical Problems in Mechanics

Stokes equations and elliptic systems with nonstandard boundary conditions

Équations de Stokes et systèmes elliptiques avec des conditions aux limites non standard

Chérif Amrouche ${ }^{\text {a }}$, Nour El Houda Seloula ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Laboratoire de mathématiques appliquées, CNRS UMR 5142, université de Pau et des Pays de l'Adour, IPRA, avenue de l'université, 64000 Pau, France
${ }^{\text {b }}$ EPI Concha, LMA UMR CNRS 5142, INRIA Bordeaux-Sud-Ouest, 64000 Pau, France

A R T I CLE IN F O

Article history:

Received 7 July 2010
Accepted 30 March 2011
Available online 5 May 2011
Presented by Philippe G. Ciarlet

Abstract

In a three-dimensional bounded possibly multiply-connected domain of class $\mathcal{C}^{1,1}$, we consider the stationary Stokes equations with nonstandard boundary conditions of the form $\boldsymbol{u} \cdot \boldsymbol{n}=g$ and $\mathbf{c u r l} \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{h} \times \boldsymbol{n}$ or $\boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n}$ and $\pi=\pi_{0}$ on the boundary Γ. We prove the existence and uniqueness of weak, strong and very weak solutions corresponding to each boundary condition in L^{p} theory. Our proofs are based on obtaining Inf-Sup conditions that play a fundamental role. And finally, we give two Helmholtz decompositions that consist of two kinds of boundary conditions such as $\boldsymbol{u} \cdot \boldsymbol{n}$ and $\boldsymbol{u} \times \boldsymbol{n}$ on Γ. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe de classe $\mathcal{C}^{1,1}$, nous considérons les équations stationnaires de Stokes avec des conditions aux limites de la forme $\boldsymbol{u} \cdot \boldsymbol{n}=g$ et $\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{h} \times \boldsymbol{n}$ ou $\boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n}$ et $\pi=\pi_{0}$ sur le bord Γ. Nous prouvons l'existence et l'unicité des solutions faibles, fortes et très faibles en théorie L^{p}. Nos preuves sont basées sur l'obtention de conditions Inf-Sup qui jouent un rôle fondamental. Finalement, on donne deux décompositions d'Helmholtz qui tiennent compte des deux types de conditions aux limites $\boldsymbol{u} \cdot \boldsymbol{n}$ et $\boldsymbol{u} \times \boldsymbol{n}$ sur Γ.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

L'objet de cette Note consiste essentiellement à étudier en théorie L^{p}, avec $1<p<\infty$, l'existence et l'unicité de solutions faibles, fortes et très faibles pour les équations stationnaires de Stokes (\mathcal{S}_{T}) dans le cas des conditions aux limites \boldsymbol{u}. $\boldsymbol{n}=g$ et $\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{h} \times \boldsymbol{n}$ sur Γ et $\left(\mathcal{S}_{N}\right)$ dans le cas des conditions aux limites $\boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n}$ et $\pi=\pi_{0}$ sur Γ. Les résultats concernant l'existence de solutions faibles et fortes pour (\mathcal{S}_{T}) sont donnés dans le Théorème 2.1 ; et en ce qui a trait à $\left(\mathcal{S}_{N}\right)$, les résultats sont donnés dans le Théorème 3.2. Pour la preuve de solutions très faibles pour $\left(\mathcal{S}_{T}\right)$ et $\left(\mathcal{S}_{N}\right)$, l'une des difficultés consiste à donner un sens aux traces sur le bord. De nombreuses applications donnent souvent lieu à des problèmes où les conditions aux limites ci-dessus interviennent naturellement sur des parties du bord du domaine.

[^0]
1. Introduction

Let Ω be a bounded open connected set of \mathbb{R}^{3} of class $\mathcal{C}^{1,1}$ with boundary Γ. Let $\Gamma_{i}, 0 \leqslant i \leqslant I$, denote the connected components of the boundary Γ, Γ_{0} being the exterior boundary of Ω. We do not assume that Ω is simply-connected but we suppose that there exist J connected open surfaces $\Sigma_{j}, 1 \leqslant j \leqslant J$, called 'cuts,' contained in Ω, such that each surface Σ_{j} is an open subset of a smooth manifold, the boundary of Σ_{j} is contained in Γ. The intersection $\overline{\Sigma_{i}} \cap \overline{\Sigma_{j}}$ is empty for $i \neq j$, and finally the open set $\Omega^{\circ}=\Omega \backslash \bigcup_{j=1}^{J} \Sigma_{j}$ is simply-connected and pseudo- $\mathcal{C}^{1,1}$ (see [1]). We are interested in some questions concerning the stationary Stokes equations with nonstandard boundary conditions, that generally can be written as:

$$
\left(\mathcal{S}_{T}\right) \quad\left\{\begin{array} { l l }
{ - \Delta \boldsymbol { u } + \nabla \pi = \boldsymbol { f } \quad \text { and } \quad \operatorname { d i v } \boldsymbol { u } = 0 \quad \text { in } \Omega , } \\
{ \boldsymbol { u } \cdot \boldsymbol { n } = g \quad \text { and } \quad \operatorname { c u r l } \boldsymbol { u } \times \boldsymbol { n } = \boldsymbol { h } \times \boldsymbol { n } } \\
{ \langle \boldsymbol { u } \cdot \boldsymbol { n } , 1 \rangle _ { \Sigma _ { j } } = 0 , \quad 1 \leqslant j \leqslant J , } & { \text { on } \Gamma , }
\end{array} \quad (\mathcal { S } _ { N }) \quad \left\{\begin{array}{ll}
-\Delta \boldsymbol{u}+\nabla \pi=\boldsymbol{f} \quad \text { and } \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega, \\
\boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n} \quad \text { and } \pi=\pi_{0} & \text { on } \Gamma, \\
\langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 1 \leqslant i \leqslant I, &
\end{array}\right.\right.
$$

where \boldsymbol{u} denotes the velocity field and π the pressure, both being unknown, and $\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}, \boldsymbol{g}$ and π_{0} are given. Applications often give rise to problems where the previous boundary conditions occur naturally. We can find, in a Hilbertian case, a study of the Stokes problem with mixed boundary conditions of the same type [5].

To prove the existence of solutions of problems $\left(\mathcal{S}_{T}\right)$ and $\left(\mathcal{S}_{N}\right)$ (see the sketch of the proofs of Theorem 2.1 for $\left(\mathcal{S}_{T}\right)$ and Theorem 3.2 for $\left(\mathcal{S}_{N}\right)$) we begin by solving pressure π as a solution of a Neumann problem or Dirichlet problem. Then, we are reduced to solve the following elliptic problems:

$$
\begin{aligned}
& \left(E_{T}\right) \quad-\Delta \boldsymbol{\xi}=\boldsymbol{f} \text { and } \operatorname{div} \boldsymbol{\xi}=0 \quad \text { in } \Omega, \quad \boldsymbol{\xi} \cdot \boldsymbol{n}=g \quad \text { and } \quad \operatorname{curl} \boldsymbol{\xi} \times \boldsymbol{n}=\boldsymbol{h} \times \boldsymbol{n} \text { on } \Gamma, \\
& \\
& \langle\boldsymbol{\xi} \cdot \boldsymbol{n}, 1\rangle_{\Sigma_{j}}=0, \quad 1 \leqslant j \leqslant J, \\
& \left(E_{N}\right)-\Delta \boldsymbol{\xi}=\boldsymbol{f} \text { and } \operatorname{div} \boldsymbol{\xi}=0 \quad \text { in } \Omega, \quad \boldsymbol{\xi} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n} \quad \text { on } \Gamma, \quad\langle\boldsymbol{\xi} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 1 \leqslant i \leqslant I .
\end{aligned}
$$

Indeed, if (\boldsymbol{u}, π) solves problem $\left(\mathcal{S}_{T}\right)$ (it is more simply for the problem $\left(\mathcal{S}_{N}\right)$), then $\Delta \pi=\operatorname{div} \boldsymbol{f}$ in Ω and formally (but we can it justify) we have for any $\varphi \in W^{2, p^{\prime}}(\Omega)$

$$
\left\langle\frac{\partial \pi}{\partial \boldsymbol{n}}, \varphi\right\rangle_{\Gamma}=\langle\boldsymbol{f} \cdot \boldsymbol{n}-\operatorname{curl} \operatorname{curl} \boldsymbol{u} \cdot \boldsymbol{n}, \varphi\rangle_{\Gamma}=\langle\boldsymbol{f} \cdot \boldsymbol{n}, \varphi\rangle_{\Gamma}-\langle\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}, \nabla \varphi\rangle_{\Gamma}=\left\langle\boldsymbol{f} \cdot \boldsymbol{n}+\operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}), \varphi\right\rangle_{\Gamma},
$$

where $\langle\cdot, \cdot\rangle_{\Gamma}$ denotes the duality product between $\boldsymbol{W}^{-1-\frac{1}{p}, p}(\Gamma)$ and $\boldsymbol{W}^{1+\frac{1}{p}, p^{\prime}}(\Gamma)$. That means that $\frac{\partial \pi}{\partial \boldsymbol{n}}=\boldsymbol{f} \cdot \boldsymbol{n}+\operatorname{div}{ }_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n})$ in the sense of $\boldsymbol{W}^{-1-\frac{1}{p}, p}(\Gamma)$.

In the sequel, the duality product between a space X and its dual X^{\prime} is denoted by $\langle\cdot, \cdot\rangle_{X, X^{\prime}}$. For any $1<p<\infty$, we then define the spaces:

$$
\begin{aligned}
& \boldsymbol{H}^{p}(\operatorname{curl}, \Omega)=\left\{\boldsymbol{v} \in \boldsymbol{L}^{p}(\Omega) ; \operatorname{curl} \boldsymbol{v} \in \boldsymbol{L}^{p}(\Omega)\right\}, \quad \boldsymbol{H}^{p}(\operatorname{div}, \Omega)=\left\{\boldsymbol{v} \in \boldsymbol{L}^{p}(\Omega) ; \operatorname{div} \boldsymbol{v} \in L^{p}(\Omega)\right\}, \\
& \boldsymbol{X}^{p}(\Omega)=\boldsymbol{H}^{p}(\operatorname{curl}, \Omega) \cap \boldsymbol{H}^{p}(\operatorname{div}, \Omega),
\end{aligned}
$$

which are equipped with the graph norm, and their subspaces:

$$
\begin{aligned}
& \boldsymbol{H}_{0}^{p}(\text { curl, } \Omega)=\left\{\boldsymbol{v} \in \boldsymbol{H}^{p}(\text { curl, } \Omega) ; \boldsymbol{v} \times \boldsymbol{n}=\mathbf{0} \text { on } \Gamma\right\}, \quad \boldsymbol{H}_{0}^{p}(\operatorname{div}, \Omega)=\left\{\boldsymbol{v} \in \boldsymbol{H}^{p}(\operatorname{div}, \Omega) ; \boldsymbol{v} \cdot \boldsymbol{n}=0 \text { on } \Gamma\right\}, \\
& \boldsymbol{X}_{N}^{p}(\Omega)=\left\{\boldsymbol{v} \in \boldsymbol{X}^{p}(\Omega) ; \boldsymbol{v} \times \boldsymbol{n}=\mathbf{0} \text { on } \Gamma\right\}, \quad \boldsymbol{X}_{T}^{p}(\Omega)=\left\{\boldsymbol{v} \in \boldsymbol{X}^{p}(\Omega) ; \boldsymbol{v} \cdot \boldsymbol{n}=0 \text { on } \Gamma\right\},
\end{aligned}
$$

and $\boldsymbol{X}_{0}^{p}(\Omega)=\boldsymbol{X}_{N}^{p}(\Omega) \cap \boldsymbol{X}_{T}^{p}(\Omega)$. We also define the space $\boldsymbol{W}_{\sigma}^{1, p}(\Omega)=\left\{\boldsymbol{v} \in \boldsymbol{W}^{1, p}(\Omega)\right.$; div $\boldsymbol{v}=0$ in $\left.\Omega\right\}$. For any function q in $W^{1, p}\left(\Omega^{\circ}\right), \operatorname{grad} q$ can be extended to $\boldsymbol{L}^{p}(\Omega)$. We denote this extension by $\widetilde{\operatorname{grad} q}$. We finally define the spaces:

$$
\begin{aligned}
& \boldsymbol{K}_{T}^{p}(\Omega)=\left\{\boldsymbol{v} \in \boldsymbol{X}_{T}^{p}(\Omega) ; \operatorname{curl} \boldsymbol{v}=\mathbf{0}, \operatorname{div} \boldsymbol{v}=0 \text { in } \Omega\right\}, \\
& \boldsymbol{K}_{N}^{p}(\Omega)=\left\{\boldsymbol{v} \in \boldsymbol{X}_{N}^{p}(\Omega) ; \operatorname{curl} \boldsymbol{v}=\mathbf{0}, \operatorname{div} \boldsymbol{v}=0 \text { in } \Omega\right\} .
\end{aligned}
$$

We know due to [4] (see also [1] for the case $p=2$) that the space $\boldsymbol{K}_{T}^{p}(\Omega)$ is of dimension J and that it is spanned by functions $\widetilde{\operatorname{grad}} q_{j}^{T}, 1 \leqslant j \leqslant J$, where each $q_{j}^{T} \in W^{1, p}\left(\Omega^{\circ}\right)$. Similarly, the dimension of the space $K_{N}^{p}(\Omega)$ is I and that it is spanned by the functions $\operatorname{grad} q_{i}^{N}, 1 \leqslant i \leqslant I$, where each $q_{i}^{N} \in W^{1, p}(\Omega)$. In what follows, the letter C denotes a constant that does not necessarily have the same value. The detailed proofs of the results announced in this Note are given in [4].

2. The Stokes equations with the tangential boundary conditions

We can prove that by assuming appropriate conditions on \boldsymbol{f} and \boldsymbol{h}, the pressure in the problem $\left(\mathcal{S}_{T}\right)$ may be constant, and we are reduced to solve the elliptic system $\left(E_{T}\right)$:

Proposition 2.1. Let \boldsymbol{f} belongs to $\boldsymbol{L}^{p}(\Omega)$ with $\operatorname{div} \boldsymbol{f}=0$ in $\Omega, g \in W^{1-\frac{1}{p}, p}(\Gamma)$ and $\boldsymbol{h} \in \boldsymbol{W}^{-\frac{1}{p}, p}(\Gamma)$ verify the following compatibility conditions:

$$
\begin{align*}
& \boldsymbol{f} \cdot \boldsymbol{n}+\operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n})=0 \quad \text { on } \Gamma \tag{1}\\
& \forall \boldsymbol{v} \in \boldsymbol{K}_{T}^{p^{\prime}}(\Omega), \quad \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{d} \boldsymbol{x}+\langle\boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{v}\rangle_{\boldsymbol{w}^{-\frac{1}{p}, p}(\Gamma) \times \boldsymbol{W}^{\frac{1}{p}, p^{\prime}}(\Gamma)}=0 \quad \text { and } \quad \int_{\Gamma} \mathrm{g} \mathrm{~d} \boldsymbol{\sigma}=0, \tag{2}
\end{align*}
$$

where $\operatorname{div}_{\Gamma}$ is the surface divergence on Γ. Then, the problem $\left(E_{T}\right)$ has a unique solution \boldsymbol{u} in $\boldsymbol{W}^{1, p}(\Omega)$ satisfying the estimate:

$$
\|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)} \leqslant C\left(\|\boldsymbol{f}\|_{\boldsymbol{L}^{p}(\Omega)}+\|g\|_{W^{1-1 / p, p}(\Gamma)}+\|\boldsymbol{h} \times \boldsymbol{n}\|_{\boldsymbol{W}^{-1 / p, p}(\Gamma)}\right) .
$$

Moreover, if $g \in W^{2-1 / p, p}(\Gamma)$ and $\boldsymbol{h} \in \boldsymbol{W}^{1-1 / p, p}(\Gamma)$, then the solution \boldsymbol{u} belongs to $\boldsymbol{W}^{2, p}(\Omega)$ and satisfies the corresponding estimate.

Sketch of the proof. For the proof of weak solutions, we reduce $\left(E_{T}\right)$ to a problem having homogeneous normal boundary condition on Γ, where it is easy to solve it by using the Inf-Sup condition (see [4]):

$$
\begin{equation*}
\inf _{\boldsymbol{\varphi} \in \boldsymbol{V}_{T}^{p^{\prime}}(\Omega)} \sup _{\boldsymbol{u} \in \boldsymbol{V}_{T}^{p}(\Omega)} \frac{\int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{\varphi} \mathrm{d} \boldsymbol{x}}{\|\boldsymbol{u}\|_{\boldsymbol{X}_{T}^{p}(\Omega)}\|\boldsymbol{\varphi}\|_{\boldsymbol{X}_{T}^{p^{\prime}}(\Omega)}}>0 \tag{3}
\end{equation*}
$$

with

$$
\boldsymbol{V}_{T}^{p}(\Omega)=\left\{\boldsymbol{v} \in \boldsymbol{X}_{T}^{p}(\Omega) ; \operatorname{div} \boldsymbol{v}=0 \text { in } \Omega,\langle\boldsymbol{v} \cdot \boldsymbol{n}, 1\rangle_{\Sigma_{j}}=0,1 \leqslant j \leqslant J\right\}
$$

For the regularity, we set $\boldsymbol{z}=\boldsymbol{\operatorname { c u r l }} \boldsymbol{u}$. Since $\boldsymbol{z} \times \boldsymbol{n} \in \boldsymbol{W}^{1-1 / p, p}(\Gamma)$, we deduce from [4] that $\boldsymbol{z} \in \boldsymbol{W}^{1, p}(\Omega)$. Therefore, since $\boldsymbol{u} \cdot \boldsymbol{n} \in W^{2-1 / p, p}(\Gamma)$, then $\boldsymbol{u} \in \boldsymbol{W}^{2, p}(\Omega)$.

Theorem 2.1 (Weak and Strong solutions for $\left(\mathcal{S}_{T}\right)$). Let $\boldsymbol{f}, \mathrm{g}, \boldsymbol{h}$ with

$$
\begin{equation*}
\boldsymbol{f} \in\left(\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{div}, \Omega)\right)^{\prime}, \quad g \in W^{1-\frac{1}{p}, p}(\Gamma), \quad \boldsymbol{h} \in \boldsymbol{W}^{-\frac{1}{p}, p}(\Gamma) \tag{4}
\end{equation*}
$$

and verify the compatibility conditions (2). Then, the Stokes problem $\left(\mathcal{S}_{T}\right)$ has a unique solution $(\boldsymbol{u}, \pi) \in \boldsymbol{W}^{1, p}(\Omega) \times L^{p}(\Omega) / \mathbb{R}$ satisfying the estimate:

$$
\|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)}+\|\pi\|_{L^{p}(\Omega) / \mathbb{R}} \leqslant C\left(\|\boldsymbol{f}\|_{\left(\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{div}, \Omega)\right)^{\prime}}+\|g\|_{W^{1-\frac{1}{p}, p}(\Gamma)}+\|\boldsymbol{h} \times \boldsymbol{n}\|_{\boldsymbol{W}^{-\frac{1}{p}, p}(\Gamma)}\right) .
$$

Moreover, if $\boldsymbol{f} \in \boldsymbol{L}^{p}(\Omega), g \in W^{2-\frac{1}{p}, p}(\Gamma), \boldsymbol{h} \in \boldsymbol{W}^{1-\frac{1}{p}, p}(\Gamma)$, the solution (\boldsymbol{u}, π) belongs to $\boldsymbol{W}^{2, p}(\Omega) \times W^{1, p}(\Omega)$ and satisfies the corresponding estimate.

Sketch of the proof. We reduce $\left(\mathcal{S}_{T}\right)$ to a problem with the homogeneous normal boundary condition on Γ. We use again the Inf-Sup condition (3) in order to prove the existence of a unique $\boldsymbol{u} \in \boldsymbol{W}^{1, p}(\Omega)$ solution of (\mathcal{S}_{T}) and by using De Rham's Theorem, we prove the existence of a unique $\pi \in L^{p}(\Omega)$. For the regularity of the solution, we observe that π satisfies: $\operatorname{div}(\nabla \pi-\boldsymbol{f})=0$ in Ω and $(\nabla \pi-\boldsymbol{f}) \cdot \boldsymbol{n}=-\operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n})$ on Γ which implies that π belongs to $W^{1, p}(\Omega)$. We deduce the regularity of \boldsymbol{u} since \boldsymbol{u} is a solution of a problem $\left(E_{T}\right)$ with the right-hand side $\boldsymbol{F}=\boldsymbol{f}-\nabla \pi$ and by using some regularity properties concerning the tangential vector fields \boldsymbol{v} in $\boldsymbol{L}^{p}(\Omega)$ with $\operatorname{div} \boldsymbol{v}$ in $W^{1, p}(\Omega)$ and $\operatorname{curl} \boldsymbol{v}$ in $\boldsymbol{W}^{1, p}(\Omega)$.

Remark 2.2. We can also treat the case when the divergence operator does not vanish. So we consider the following Stokes problem

$$
\begin{cases}-\Delta \boldsymbol{u}+\nabla \pi=\boldsymbol{f} \quad \text { and } \quad \operatorname{div} \boldsymbol{u}=\chi \quad \text { in } \Omega, \tag{5}\\ \boldsymbol{u} \cdot \boldsymbol{n}=g \quad \text { and } \quad \operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{h} \times \boldsymbol{n} & \text { on } \Gamma, \quad\langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Sigma_{j}}=0, \quad 1 \leqslant j \leqslant J\end{cases}
$$

If we suppose that χ belongs to $L^{p}(\Omega), \boldsymbol{f}, g, \boldsymbol{h}$ as in (4) satisfying the first compatibility condition in (2) and such that

$$
\begin{equation*}
\int_{\Omega} \chi \mathrm{d} \boldsymbol{x}=\int_{\Gamma} g \mathrm{~d} \boldsymbol{\sigma} \tag{6}
\end{equation*}
$$

then, we can prove that the Stokes problem (5) has a unique solution $(\boldsymbol{u}, \pi) \in \boldsymbol{W}^{1, p}(\Omega) \times L^{p}(\Omega)$ satisfying the estimate:

$$
\|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)}+\|\pi\|_{L^{p}(\Omega) / \mathbb{R}} \leqslant C\left(\|\boldsymbol{f}\|_{\left(\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{div}, \Omega)\right)^{\prime}}+\|\chi\|_{L^{p}(\Omega)}+\|g\|_{W^{1-\frac{1}{p}, p}(\Gamma)}+\|\boldsymbol{h} \times \boldsymbol{n}\|_{\boldsymbol{W}^{-\frac{1}{p}, p}(\Gamma)}\right) .
$$

Moreover, if we suppose that $\chi \in W^{1, p}(\Omega)$ with $\boldsymbol{f} \in \boldsymbol{L}^{p}(\Omega), g \in W^{2-\frac{1}{p}, p}(\Gamma), \boldsymbol{h} \in \boldsymbol{W}^{1-\frac{1}{p}, p}(\Gamma)$, then the solution ($\left.\boldsymbol{u}, \pi\right)$ belongs to $\boldsymbol{W}^{2, p}(\Omega) \times W^{1, p}(\Omega)$ and satisfies the corresponding estimate.

We define now the following spaces: $\boldsymbol{T}^{p}(\Omega)=\left\{\boldsymbol{\varphi} \in \boldsymbol{H}_{0}^{p}(\operatorname{div}, \Omega) ; \operatorname{div} \boldsymbol{\varphi} \in W_{0}^{1, p}(\Omega)\right\}, \boldsymbol{Y}_{T}^{p}(\Omega)=\left\{\boldsymbol{\varphi} \in \boldsymbol{W}^{2, p}(\Omega) ; \boldsymbol{\varphi} \cdot \boldsymbol{n}=0\right.$, $\operatorname{div} \boldsymbol{\varphi}=0, \operatorname{curl} \boldsymbol{\varphi} \times \boldsymbol{n}=\mathbf{0}$ on $\Gamma\}$ and $\boldsymbol{H}_{p}(\Delta ; \Omega)=\left\{\boldsymbol{v} \in \boldsymbol{L}^{p}(\Omega) ; \Delta \boldsymbol{v} \in\left(\boldsymbol{T}^{p^{\prime}}(\Omega)\right)^{\prime}\right\}$, endowed with the corresponding graph norms. Note that $\mathcal{D}(\Omega)$ is dense in $\boldsymbol{T}^{p}(\Omega)$ and then $\left[\boldsymbol{T}^{p}(\Omega)\right]^{\prime}$ is a subspace of $\mathcal{D}^{\prime}(\Omega)$.

Theorem 2.3 (Very weak solutions for $\left(\mathcal{S}_{T}\right)$). Let \boldsymbol{f}, χ, g, and \boldsymbol{h} with

$$
\boldsymbol{f} \in\left(\boldsymbol{T}^{p^{\prime}}(\Omega)\right)^{\prime}, \quad \chi \in L^{p}(\Omega), \quad g \in W^{-1 / p, p}(\Gamma), \quad \boldsymbol{h} \in \boldsymbol{W}^{-1-1 / p, p}(\Gamma)
$$

and satisfying the first compatibility condition in (2) and (6). Then, the Stokes problem (5) has exactly one solution $\boldsymbol{u} \in \boldsymbol{H}_{p}(\Delta ; \Omega)$ and $\pi \in W^{-1, p}(\Omega) / \mathbb{R}$ satisfying the estimate:

$$
\|\boldsymbol{u}\|_{\boldsymbol{H}_{p}(\Delta ; \Omega)}+\|\pi\|_{W^{-1, p}(\Omega) / \mathbb{R}} \leqslant C\left(\|\boldsymbol{f}\|_{\left(\boldsymbol{T}^{p^{\prime}}(\Omega)\right)^{\prime}}+\|\chi\|_{L^{p}(\Omega)}+\|g\|_{W^{-1 / p, p}(\Gamma)}+\|\boldsymbol{h} \times \boldsymbol{n}\|_{\boldsymbol{W}^{-1-1 / p, p}(\Gamma)}\right) .
$$

Sketch of the proof. We use here the same ideas as in [2] and [3] to prove the existence of very weak solutions. First, we prove the density of the space $\mathcal{D}(\bar{\Omega})$ in $\boldsymbol{H}_{p}(\Delta ; \Omega)$. Second, we prove that the mapping $\gamma:\left.\boldsymbol{u} \mapsto \mathbf{c u r l} \boldsymbol{u}\right|_{\Gamma} \times \boldsymbol{n}$ on the space $\mathcal{D}(\bar{\Omega})$ can be extended by continuity to a linear and continuous mapping still denoted by γ, from $\boldsymbol{H}_{p}(\Delta$; Ω) into $\boldsymbol{W}^{-1-\frac{1}{p}, p}(\Gamma)$ and we have the following Green formula: for any $\boldsymbol{u} \in \boldsymbol{H}_{p}(\Delta ; \Omega)$ and $\boldsymbol{\varphi} \in \boldsymbol{Y}_{T}^{p^{\prime}}(\Omega)$,

$$
\begin{equation*}
\langle\Delta \boldsymbol{u}, \boldsymbol{\varphi}\rangle_{\left(\boldsymbol{T}^{p^{\prime}}(\Omega)\right)^{\prime} \times \boldsymbol{T}^{p^{\prime}}(\Omega)}=\int_{\Omega} \boldsymbol{u} \cdot \Delta \boldsymbol{\varphi} \mathrm{d} \boldsymbol{x}+\langle\boldsymbol{\operatorname { c u r l }} \boldsymbol{u} \times \boldsymbol{n}, \boldsymbol{\varphi}\rangle_{\boldsymbol{W}^{-1-\frac{1}{p}, p}(\Gamma) \times \boldsymbol{W}^{1+1 / p, p^{\prime}}(\Gamma)} . \tag{7}
\end{equation*}
$$

Finally, using the formula (7), we can write an equivalent variational formulation of the problem (5) and we are able to conclude by using a duality argument.

3. The Stokes equations with the normal boundary conditions

In this section, we focus on the study of the Stokes problem $\left(\mathcal{S}_{N}\right)$. Observe that the pressure π can be obtained independently of the velocity as a solution of a Dirichlet problem. So, the velocity \boldsymbol{u} is a solution of an elliptic system of type (E_{N}).

Proposition 3.1. Let $\boldsymbol{f} \in\left(\boldsymbol{H}_{0}^{p^{\prime}}(\mathbf{c u r l}, \Omega)\right)^{\prime}$ with $\operatorname{div} \boldsymbol{f}=0$ in Ω and $\boldsymbol{g} \in \boldsymbol{W}^{1-1 / p, p}(\Gamma)$ satisfying the compatibility condition:

$$
\begin{equation*}
\forall \boldsymbol{v} \in \boldsymbol{K}_{N}^{p^{\prime}}(\Omega), \quad\langle\boldsymbol{f}, \boldsymbol{v}\rangle_{\left[\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime} \times \boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{curl}, \Omega)}=0 . \tag{8}
\end{equation*}
$$

Then, the problem $\left(E_{N}\right)$ has a unique solution \boldsymbol{u} in $\boldsymbol{W}^{1, p}(\Omega)$ satisfying the estimate:

$$
\|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)} \leqslant C\left(\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime}}+\|\boldsymbol{g} \times \boldsymbol{n}\|_{\boldsymbol{W}^{1-1 / p, p}(\Gamma)}\right) .
$$

Moreover, if $\boldsymbol{f} \in \boldsymbol{L}^{p}(\Omega)$ and $\boldsymbol{g} \in \boldsymbol{W}^{2-1 / p, p}(\Gamma)$, then the solution \boldsymbol{u} is in $\boldsymbol{W}^{2, p}(\Omega)$ and satisfies the corresponding estimate.
Sketch of the proof. First, we lift the boundary condition and we write an equivalent variational formulation for the homogeneous problem as follows: find $\boldsymbol{u} \in \boldsymbol{V}_{N}^{p}(\Omega)$ such that

$$
\begin{equation*}
\forall \varphi \in \boldsymbol{V}_{N}^{p^{\prime}}(\Omega), \quad \int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{\varphi} \mathrm{d} \boldsymbol{x}=\langle\boldsymbol{f}, \boldsymbol{\varphi}\rangle_{\Omega} \tag{9}
\end{equation*}
$$

where $\boldsymbol{V}_{N}^{p}(\Omega)=\left\{\boldsymbol{w} \in \boldsymbol{X}_{N}^{p}(\Omega) ; \operatorname{div} \boldsymbol{w}=0\right.$ in Ω and $\left.\langle\boldsymbol{w} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0,1 \leqslant i \leqslant I\right\}$. Next, using a result concerning normal vector potential [4], we establish a similar Inf-Sup condition to (3), where the spaces $\boldsymbol{X}_{T}^{p}(\Omega)$ and $\boldsymbol{V}_{T}^{p}(\Omega)$ are replaced by the spaces $\boldsymbol{X}_{N}^{p}(\Omega)$ and $\boldsymbol{V}_{N}^{p}(\Omega)$, respectively. This conclude the proof of weak solution. For the regularity of the velocity, we need some additional properties. We prove the following trace formula for any $\boldsymbol{v} \in \boldsymbol{W}^{1, p}(\Omega)$:
$\operatorname{curl} \boldsymbol{u} \cdot \boldsymbol{n}=\left(\sum_{j=1}^{2} \frac{\partial \boldsymbol{u}}{\partial s_{j}} \times \boldsymbol{\tau}_{j}\right) \cdot \boldsymbol{n} \quad$ on Γ, \quad in the sense of $\boldsymbol{W}^{-1 / p, p}(\Gamma)$.
As a consequence, if we suppose that $\boldsymbol{u} \times \boldsymbol{n} \in \boldsymbol{W}^{2-1 / p, p}(\Gamma)$, then $\boldsymbol{c u r l} \boldsymbol{u} \cdot \boldsymbol{n} \in W^{1-1 / p, p}(\Gamma)$. This implies that curl $\boldsymbol{u} \in$ $\boldsymbol{W}^{1, p}(\Omega)$ and thereafter from [4], we have $\boldsymbol{u} \in \boldsymbol{W}^{2, p}(\Omega)$.

We can also treat the case of the following elliptic system, which is similar to (E_{N}) but where we have replaced the condition $\operatorname{div} \boldsymbol{u}=0$ in Ω by $\operatorname{div} \boldsymbol{u}=0$ on Γ :

$$
\left(E_{N}^{\prime}\right)-\Delta \boldsymbol{u}=\boldsymbol{f} \quad \text { in } \Omega, \quad \operatorname{div} \boldsymbol{u}=0 \quad \text { on } \Gamma, \quad \boldsymbol{u} \times \boldsymbol{n}=\mathbf{0} \quad \text { on } \Gamma, \quad\langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0 \quad \text { for any } 1 \leqslant i \leqslant I .
$$

Theorem 3.1. Let $\boldsymbol{f} \in\left(\boldsymbol{H}_{0}^{p^{\prime}}(\mathbf{c u r l}, \Omega)\right)^{\prime}$ satisfying the compatibility condition (8). Then, the problem (E_{N}^{\prime}) has a unique solution \boldsymbol{u} in $\boldsymbol{W}^{1, p}(\Omega)$ satisfying the estimate:

$$
\begin{equation*}
\|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)} \leqslant C\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime}} . \tag{11}
\end{equation*}
$$

Moreover, if $\boldsymbol{f} \in \boldsymbol{L}^{p}(\Omega)$, then the solution \boldsymbol{u} is in $\boldsymbol{W}^{2, p}(\Omega)$ and satisfies the corresponding estimate.
Theorem 3.2 (Weak and Strong solutions for $\left(\mathcal{S}_{N}\right)$). Let $\boldsymbol{f}, \boldsymbol{g}, \pi_{0}$ such that

$$
\begin{align*}
& \boldsymbol{f} \in\left(\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{curl}, \Omega)\right)^{\prime}, \quad \boldsymbol{g} \in \boldsymbol{W}^{1-1 / p, p}(\Gamma), \quad \pi_{0} \in W^{1-1 / p, p}(\Gamma), \tag{12}\\
& \forall \boldsymbol{v} \in \boldsymbol{K}_{N}^{p^{\prime}}(\Omega), \quad\langle\boldsymbol{f}, \boldsymbol{v}\rangle_{\left[\boldsymbol{H}_{0}^{p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime} \times \boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{curl}, \Omega)}-\int_{\Gamma} \pi_{0} \boldsymbol{v} \cdot \boldsymbol{n} \mathrm{~d} \boldsymbol{\sigma}=0, \tag{13}
\end{align*}
$$

then, the Stokes problem $\left(\mathcal{S}_{N}\right)$ has a unique solution $(\boldsymbol{u}, \pi) \in \boldsymbol{W}^{1, p}(\Omega) \times W^{1, p}(\Omega)$ satisfying the estimate

$$
\begin{equation*}
\|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)}+\|\pi\|_{W^{1, p}(\Omega)} \leqslant C\left(\|\boldsymbol{f}\|_{\left(\boldsymbol{H}_{0}^{p^{\prime}}(\mathbf{c u r l}, \Omega)\right)^{\prime}}+\|\boldsymbol{g} \times \boldsymbol{n}\|_{\boldsymbol{W}^{1-1 / p, p}(\Gamma)}+\left\|\pi_{0}\right\|_{W^{1-1 / p, p}(\Gamma)}\right) . \tag{14}
\end{equation*}
$$

Moreover, if $\boldsymbol{f} \in \boldsymbol{L}^{p}(\Omega), \boldsymbol{g} \in \boldsymbol{W}^{2-1 / p, p}(\Gamma), \pi_{0} \in W^{1-1 / p, p}(\Gamma)$, then the solution (\boldsymbol{u}, π) belongs to $\boldsymbol{W}^{2, p}(\Omega) \times W^{1, p}(\Omega)$ and satisfies the corresponding estimate.

Sketch of the proof. We note that the pressure is a solution of the following Dirichlet problem: $-\Delta \pi=\operatorname{div} \boldsymbol{f}$ in Ω and $\pi=\pi_{0}$ on Γ. Since $\pi_{0} \in W^{1-1 / p, p}(\Gamma)$, then $\pi \in W^{1, p}(\Omega)$. The velocity is a solution of the problem (E_{N}) and it suffices to apply Proposition 3.1 to obtain weak and strong solutions.

Theorem 3.3 (Very weak solutions for $\left(\mathcal{S}_{N}\right)$). Let $\boldsymbol{f}, \mathbf{g}$, and π_{0} with

$$
\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}, \quad \boldsymbol{g} \in \boldsymbol{W}^{-1 / p, p}(\Gamma), \quad \pi_{0} \in W^{-1 / p, p}(\Gamma)
$$

and satisfying the compatibility conditions (13). Then, the Stokes problem $\left(\mathcal{S}_{N}\right)$ has exactly one solution $\boldsymbol{u} \in \boldsymbol{L}^{p}(\Omega)$ and $\pi \in L^{p}(\Omega)$. Moreover, there exists a constant $C>0$ depending only on p and Ω such that:

$$
\begin{equation*}
\|\boldsymbol{u}\|_{\boldsymbol{L}^{p}(\Omega)}+\|\pi\|_{L^{p}(\Omega)} \leqslant C\left(\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}}+\|\boldsymbol{g}\|_{\boldsymbol{W}^{-1 / p, p}(\Gamma)}+\left\|\pi_{0}\right\|_{\boldsymbol{W}^{-1 / p, p}(\Gamma)}\right) . \tag{15}
\end{equation*}
$$

Sketch of the proof. We use similar arguments presented for the case of problem (\mathcal{S}_{N}) and the main difference between the two proofs is the fact that we prove a global Green formula. More precisely, we set the space

$$
\boldsymbol{M}^{p}(\Omega)=\left\{(\boldsymbol{u}, \pi) \in \boldsymbol{Z}^{p}(\Omega) \times L^{p}(\Omega) ;-\Delta \boldsymbol{u}+\nabla \pi \in\left[\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}\right\}
$$

with $\boldsymbol{Z}^{p}(\Omega)=\left\{\boldsymbol{v} \in \boldsymbol{L}^{p}(\Omega), \operatorname{div} \boldsymbol{v}=0\right.$ in Ω and $\left.\langle\boldsymbol{v} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}, 1 \leqslant i \leqslant I\right\}$ and by establishing the density of $\mathcal{D}_{\sigma}(\bar{\Omega}) \times \mathcal{D}(\bar{\Omega})$ in $\boldsymbol{M}^{p}(\Omega)$, we prove that the trace of any $(\boldsymbol{u}, \pi) \in \boldsymbol{M}^{p}(\Omega)$ belongs to $\boldsymbol{W}^{-1 / p, p}(\Gamma) \times W^{-1 / p, p}(\Gamma)$ with the following Green formula for any $\boldsymbol{\varphi} \in \boldsymbol{Y}_{N}^{p^{\prime}}(\Omega)$:

$$
\begin{equation*}
\langle-\Delta \boldsymbol{u}+\nabla \pi, \boldsymbol{\varphi}\rangle_{\Omega}=-\int_{\Omega} \boldsymbol{u} \cdot \Delta \boldsymbol{\varphi} \mathrm{d} \boldsymbol{x}+\langle\boldsymbol{u} \times \boldsymbol{n}, \operatorname{curl} \boldsymbol{\varphi}\rangle_{\Gamma}-\int_{\Omega} \pi \operatorname{div} \boldsymbol{\varphi} \mathrm{d} \boldsymbol{x}+\langle\pi, \boldsymbol{\varphi} \cdot \boldsymbol{n}\rangle_{\Gamma} \tag{16}
\end{equation*}
$$

where $\boldsymbol{Y}_{N}^{p^{\prime}}(\Omega)=\left\{\boldsymbol{\varphi} \in \boldsymbol{W}^{2, p}(\Omega) ; \operatorname{div} \boldsymbol{\varphi}=0\right.$ and $\boldsymbol{\varphi} \times \boldsymbol{n}=\mathbf{0}$ on $\left.\Gamma\right\}$. In the first time, we prove the existence of a unique $\pi \in W^{-1, p}(\Omega)$, next we use [3] in order to prove that $\pi \in L^{p}(\Omega)$.

4. Helmholtz decompositions

According to the two types $\boldsymbol{u} \cdot \boldsymbol{n}$ and $\boldsymbol{u} \times \boldsymbol{n}$ of boundary conditions on Γ, we give decompositions of vector fields \boldsymbol{u} in $\boldsymbol{L}^{p}(\Omega)$. Our results may be regarded as an extension of the well-known De Rham-Hodge-Kodaira decomposition of \mathcal{C}^{∞} forms on compact Riemannian manifolds into \boldsymbol{L}^{p}-vector fields on Ω. We can find similar decompositions in [6], where the authors consider more regular domain with \mathcal{C}^{∞}-boundary Γ. We can see also [7] for the case $p=2$.

Theorem 4.1.

(i) Let $\boldsymbol{u} \in \boldsymbol{L}^{p}(\Omega)$. Then, there exist $\chi \in W^{1, p}(\Omega), \boldsymbol{w} \in \boldsymbol{W}_{\sigma}^{1, p}(\Omega) \cap \boldsymbol{X}_{N}^{p}(\Omega), \boldsymbol{z} \in \boldsymbol{K}_{T}^{p}(\Omega)$ such that: $\boldsymbol{u}=\boldsymbol{z}+\nabla \chi+$ curl \boldsymbol{w} satisfies the estimate:

$$
\|\boldsymbol{z}\|_{\boldsymbol{L}^{p}(\Omega)}+\|\chi\|_{W^{1, p}(\Omega) / \mathbb{R}}+\|\boldsymbol{w}\|_{\boldsymbol{W}^{1, p}(\Omega) / \boldsymbol{K}_{N}^{p}(\Omega)} \leqslant C\|\boldsymbol{u}\|_{\boldsymbol{L}^{p}(\Omega)},
$$

where \boldsymbol{z} is unique, χ is unique up to an additive constant and \boldsymbol{w} is unique up to an additive element of $\boldsymbol{K}_{N}^{p}(\Omega)$.
(ii) Let $\boldsymbol{u} \in \boldsymbol{L}^{p}(\Omega)$. Then, there exist $\chi \in W_{0}^{1, p}(\Omega)$, $\boldsymbol{w} \in \boldsymbol{W}_{\sigma}^{1, p}(\Omega) \cap \boldsymbol{X}_{T}^{p}(\Omega), \boldsymbol{z} \in \boldsymbol{K}_{N}^{p}(\Omega)$ such that: $\boldsymbol{u}=\boldsymbol{z}+\nabla \chi+$ curl \boldsymbol{w} satisfies the estimate:

$$
\|\boldsymbol{z}\|_{\boldsymbol{L}^{p}(\Omega)}+\|\chi\|_{W^{1, p}(\Omega)}+\|\boldsymbol{w}\|_{\boldsymbol{W}^{1, p}(\Omega) / \boldsymbol{K}_{T}^{p}(\Omega)} \leqslant C\|\boldsymbol{u}\|_{\boldsymbol{L}^{p}(\Omega)},
$$

where \boldsymbol{z} and χ are unique and \boldsymbol{w} is unique up to an additive element of $\boldsymbol{K}_{T}^{p}(\Omega)$.
Sketch of the proof. We give a short proof of the first point and the proof of the second one is similar. First, we introduce the solution χ in $W^{1, p}(\Omega)$, unique up to an additive constant, of the problem: $-\Delta \chi=\operatorname{div} \boldsymbol{u}$ in Ω and $(\operatorname{grad} \chi-\boldsymbol{u}) \cdot \boldsymbol{n}=0$ on Γ. Second, we solve the problem: $-\Delta \boldsymbol{w}=\operatorname{curl} \boldsymbol{u}$ in Ω and $\operatorname{div} \boldsymbol{w}=0$ in $\Omega, \boldsymbol{w} \times \boldsymbol{n}=\mathbf{0}$ on Γ, which has a solution $\boldsymbol{w} \in \boldsymbol{W}^{1, p}(\Omega)$, unique up to an additive element of $\boldsymbol{K}_{N}^{p}(\Omega)$. To finish, observe that the function $\boldsymbol{z}=\boldsymbol{u}-\nabla \chi-\operatorname{curl} \boldsymbol{w}$ belongs to $\boldsymbol{K}_{T}^{p}(\Omega)$.

Remark 4.2. We can prove also similar decompositions for singular vector fields $\boldsymbol{u} \in\left(\boldsymbol{H}_{0}^{p}(\operatorname{div}, \Omega)\right)^{\prime}$ and for $\boldsymbol{u} \in$ $\left(\boldsymbol{H}_{0}^{p}(\mathbf{c u r l}, \Omega)\right)^{\prime}$.

References

[1] C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci. 21 (1998) $823-864$.
[2] C. Amrouche, V. Girault, Decomposition of vector space and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 119 (44) (1994) 109-140.
[3] C. Amrouche, M.A. Rodríguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Ration. Mech. Anal. 199 (2011) 597-651.
[4] C. Amrouche, N. Seloula, L^{P}-theory for vector potentials and Sobolev's inequalities for vector fields. Application to the Stokes problem's with pressure boundary conditions, submitted for publication.
[5] C. Conca, F. Murat, O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Jpn. J. Math. 20 (1994) 263-318.
[6] H. Kozono, T. Yanagisawa, L^{r}-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains, Indiana Univ. Math. J. 58 (4) (2009).
[7] R. Temam, Theory and Numerical Analysis of the Navier-Stokes Equations, North-Holland, Amsterdam, 1977.

[^0]: E-mail addresses: cherif.amrouche@univ-pau.fr (C. Amrouche), nourelhouda.seloula@etud.univ-pau.fr (N. Seloula).
 1631-073X/\$ - see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2011.04.007

