

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical Problems in Mechanics

Stokes equations and elliptic systems with nonstandard boundary conditions

Équations de Stokes et systèmes elliptiques avec des conditions aux limites non standard

Chérif Amrouche^a, Nour El Houda Seloula^{a,b}

^a Laboratoire de mathématiques appliquées, CNRS UMR 5142, université de Pau et des Pays de l'Adour, IPRA, avenue de l'université, 64000 Pau, France ^b EPI Concha, LMA UMR CNRS 5142, INRIA Bordeaux-Sud-Ouest, 64000 Pau, France

ARTICLE INFO

Article history: Received 7 July 2010 Accepted 30 March 2011 Available online 5 May 2011

Presented by Philippe G. Ciarlet

ABSTRACT

In a three-dimensional bounded possibly multiply-connected domain of class $C^{1,1}$, we consider the stationary Stokes equations with nonstandard boundary conditions of the form $\mathbf{u} \cdot \mathbf{n} = \mathbf{g}$ and $\mathbf{curl} \mathbf{u} \times \mathbf{n} = \mathbf{h} \times \mathbf{n}$ or $\mathbf{u} \times \mathbf{n} = \mathbf{g} \times \mathbf{n}$ and $\pi = \pi_0$ on the boundary Γ . We prove the existence and uniqueness of weak, strong and very weak solutions corresponding to each boundary condition in L^p theory. Our proofs are based on obtaining Inf-Sup conditions that play a fundamental role. And finally, we give two Helmholtz decompositions that consist of two kinds of boundary conditions such as $\mathbf{u} \cdot \mathbf{n}$ and $\mathbf{u} \times \mathbf{n}$ on Γ .

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe de classe $C^{1,1}$, nous considérons les équations stationnaires de Stokes avec des conditions aux limites de la forme $\boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{g}$ et **curl** $\boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{h} \times \boldsymbol{n}$ ou $\boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{g} \times \boldsymbol{n}$ et $\pi = \pi_0$ sur le bord Γ . Nous prouvons l'existence et l'unicité des solutions faibles, fortes et très faibles en théorie L^p . Nos preuves sont basées sur l'obtention de conditions lnf-Sup qui jouent un rôle fondamental. Finalement, on donne deux décompositions d'Helmholtz qui tiennent compte des deux types de conditions aux limites $\boldsymbol{u} \cdot \boldsymbol{n}$ et $\boldsymbol{u} \times \boldsymbol{n}$ sur Γ .

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

L'objet de cette Note consiste essentiellement à étudier en théorie L^p , avec 1 , l'existence et l'unicité de solutions $faibles, fortes et très faibles pour les équations stationnaires de Stokes <math>(S_T)$ dans le cas des conditions aux limites $\mathbf{u} \cdot \mathbf{n} = \mathbf{g}$ et **curl** $\mathbf{u} \times \mathbf{n} = \mathbf{h} \times \mathbf{n}$ sur Γ et (S_N) dans le cas des conditions aux limites $\mathbf{u} \times \mathbf{n} = \mathbf{g} \times \mathbf{n}$ et $\pi = \pi_0$ sur Γ . Les résultats concernant l'existence de solutions faibles et fortes pour (S_T) sont donnés dans le Théorème 2.1; et en ce qui a trait à (S_N) , les résultats sont donnés dans le Théorème 3.2. Pour la preuve de solutions très faibles pour (S_T) et (S_N) , l'une des difficultés consiste à donner un sens aux traces sur le bord. De nombreuses applications donnent souvent lieu à des problèmes où les conditions aux limites ci-dessus interviennent naturellement sur des parties du bord du domaine.

E-mail addresses: cherif.amrouche@univ-pau.fr (C. Amrouche), nourelhouda.seloula@etud.univ-pau.fr (N. Seloula).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.04.007

1. Introduction

Let Ω be a bounded open connected set of \mathbb{R}^3 of class $\mathcal{C}^{1,1}$ with boundary Γ . Let Γ_i , $0 \leq i \leq I$, denote the connected components of the boundary Γ , Γ_0 being the exterior boundary of Ω . We do not assume that Ω is simply-connected but we suppose that there exist J connected open surfaces Σ_j , $1 \leq j \leq J$, called 'cuts,' contained in Ω , such that each surface Σ_j is an open subset of a smooth manifold, the boundary of Σ_j is contained in Γ . The intersection $\overline{\Sigma_i} \cap \overline{\Sigma_j}$ is empty for $i \neq j$, and finally the open set $\Omega^\circ = \Omega \setminus \bigcup_{j=1}^J \Sigma_j$ is simply-connected and pseudo- $\mathcal{C}^{1,1}$ (see [1]). We are interested in some questions concerning the stationary Stokes equations with nonstandard boundary conditions, that generally can be written as:

where **u** denotes the velocity field and π the pressure, both being unknown, and **f**, *g*, **h**, **g** and π_0 are given. Applications often give rise to problems where the previous boundary conditions occur naturally. We can find, in a Hilbertian case, a study of the Stokes problem with mixed boundary conditions of the same type [5].

To prove the existence of solutions of problems (S_T) and (S_N) (see the sketch of the proofs of Theorem 2.1 for (S_T) and Theorem 3.2 for (S_N)) we begin by solving pressure π as a solution of a Neumann problem or Dirichlet problem. Then, we are reduced to solve the following elliptic problems:

$$(E_T) \quad -\Delta \boldsymbol{\xi} = \boldsymbol{f} \quad \text{and} \quad \operatorname{div} \boldsymbol{\xi} = 0 \quad \text{in } \Omega, \qquad \boldsymbol{\xi} \cdot \boldsymbol{n} = \boldsymbol{g} \quad \text{and} \quad \operatorname{curl} \boldsymbol{\xi} \times \boldsymbol{n} = \boldsymbol{h} \times \boldsymbol{n} \quad \text{on } \Gamma,$$

$$\langle \boldsymbol{\xi} \cdot \boldsymbol{n}, 1 \rangle_{\Sigma_j} = 0, \quad 1 \leq j \leq J,$$

$$(E_N) \quad -\Delta \boldsymbol{\xi} = \boldsymbol{f} \quad \text{and} \quad \operatorname{div} \boldsymbol{\xi} = 0 \quad \text{in } \Omega, \qquad \boldsymbol{\xi} \times \boldsymbol{n} = \boldsymbol{g} \times \boldsymbol{n} \quad \text{on } \Gamma, \qquad \langle \boldsymbol{\xi} \cdot \boldsymbol{n}, 1 \rangle_{\Gamma_i} = 0, \quad 1 \leq i \leq I.$$

Indeed, if (\boldsymbol{u}, π) solves problem (S_T) (it is more simply for the problem (S_N)), then $\Delta \pi = \operatorname{div} \boldsymbol{f}$ in Ω and formally (but we can it justify) we have for any $\varphi \in W^{2,p'}(\Omega)$

$$\left\langle \frac{\partial \pi}{\partial \boldsymbol{n}}, \varphi \right\rangle_{\Gamma} = \langle \boldsymbol{f} \cdot \boldsymbol{n} - \operatorname{curl} \operatorname{curl} \boldsymbol{u} \cdot \boldsymbol{n}, \varphi \rangle_{\Gamma} = \langle \boldsymbol{f} \cdot \boldsymbol{n}, \varphi \rangle_{\Gamma} - \langle \operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}, \nabla \varphi \rangle_{\Gamma} = \left\langle \boldsymbol{f} \cdot \boldsymbol{n} + \operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}), \varphi \right\rangle_{\Gamma},$$

where $\langle \cdot, \cdot \rangle_{\Gamma}$ denotes the duality product between $\boldsymbol{W}^{-1-\frac{1}{p},p}(\Gamma)$ and $\boldsymbol{W}^{1+\frac{1}{p},p'}(\Gamma)$. That means that $\frac{\partial \pi}{\partial \boldsymbol{n}} = \boldsymbol{f} \cdot \boldsymbol{n} + \operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n})$ in the sense of $\boldsymbol{W}^{-1-\frac{1}{p},p}(\Gamma)$.

In the sequel, the duality product between a space *X* and its dual *X'* is denoted by $\langle \cdot, \cdot \rangle_{X,X'}$. For any 1 , we then define the spaces:

$$H^{p}(\operatorname{curl}, \Omega) = \left\{ \boldsymbol{v} \in L^{p}(\Omega); \operatorname{curl} \boldsymbol{v} \in L^{p}(\Omega) \right\}, \qquad H^{p}(\operatorname{div}, \Omega) = \left\{ \boldsymbol{v} \in L^{p}(\Omega); \operatorname{div} \boldsymbol{v} \in L^{p}(\Omega) \right\}$$
$$X^{p}(\Omega) = H^{p}(\operatorname{curl}, \Omega) \cap H^{p}(\operatorname{div}, \Omega),$$

which are equipped with the graph norm, and their subspaces:

$$\begin{aligned} H_0^p(\operatorname{curl},\,\Omega) &= \big\{ \boldsymbol{v} \in H^p(\operatorname{curl},\,\Omega); \ \boldsymbol{v} \times \boldsymbol{n} = \boldsymbol{0} \text{ on } \Gamma \big\}, \\ H_0^p(\operatorname{div},\,\Omega) &= \big\{ \boldsymbol{v} \in H^p(\operatorname{div},\,\Omega); \ \boldsymbol{v} \cdot \boldsymbol{n} = 0 \text{ on } \Gamma \big\}, \\ X_N^p(\Omega) &= \big\{ \boldsymbol{v} \in X^p(\Omega); \ \boldsymbol{v} \times \boldsymbol{n} = \boldsymbol{0} \text{ on } \Gamma \big\}, \\ X_T^p(\Omega) &= \big\{ \boldsymbol{v} \in X^p(\Omega); \ \boldsymbol{v} \cdot \boldsymbol{n} = 0 \text{ on } \Gamma \big\}, \end{aligned}$$

and $X_0^p(\Omega) = X_N^p(\Omega) \cap X_T^p(\Omega)$. We also define the space $W_{\sigma}^{1,p}(\Omega) = \{ \mathbf{v} \in W^{1,p}(\Omega); \text{ div } \mathbf{v} = 0 \text{ in } \Omega \}$. For any function q in $W^{1,p}(\Omega^\circ)$, grad q can be extended to $L^p(\Omega)$. We denote this extension by grad q. We finally define the spaces:

$$K_T^p(\Omega) = \left\{ \boldsymbol{v} \in X_T^p(\Omega); \text{ curl } \boldsymbol{v} = \boldsymbol{0}, \text{ div } \boldsymbol{v} = 0 \text{ in } \Omega \right\},\$$
$$K_N^p(\Omega) = \left\{ \boldsymbol{v} \in X_N^p(\Omega); \text{ curl } \boldsymbol{v} = \boldsymbol{0}, \text{ div } \boldsymbol{v} = 0 \text{ in } \Omega \right\}.$$

We know due to [4] (see also [1] for the case p = 2) that the space $K_T^p(\Omega)$ is of dimension J and that it is spanned by functions $\widetilde{\mathbf{grad}} q_j^T$, $1 \leq j \leq J$, where each $q_j^T \in W^{1,p}(\Omega^\circ)$. Similarly, the dimension of the space $K_N^p(\Omega)$ is I and that it is spanned by the functions $\mathbf{grad} q_i^N$, $1 \leq i \leq I$, where each $q_i^N \in W^{1,p}(\Omega)$. In what follows, the letter C denotes a constant that does not necessarily have the same value. The detailed proofs of the results announced in this Note are given in [4].

2. The Stokes equations with the tangential boundary conditions

We can prove that by assuming appropriate conditions on f and h, the pressure in the problem (S_T) may be constant, and we are reduced to solve the elliptic system (E_T):

Proposition 2.1. Let \boldsymbol{f} belongs to $\boldsymbol{L}^p(\Omega)$ with div $\boldsymbol{f} = 0$ in Ω , $g \in W^{1-\frac{1}{p},p}(\Gamma)$ and $\boldsymbol{h} \in \boldsymbol{W}^{-\frac{1}{p},p}(\Gamma)$ verify the following compatibility conditions:

$$\boldsymbol{f} \cdot \boldsymbol{n} + \operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}) = 0 \quad \text{on } \Gamma, \tag{1}$$

$$\forall \boldsymbol{v} \in \boldsymbol{K}_{T}^{p'}(\Omega), \quad \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{x} + \langle \boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{v} \rangle_{\boldsymbol{W}^{-\frac{1}{p}, p}(\Gamma) \times \boldsymbol{W}^{\frac{1}{p}, p'}(\Gamma)} = 0 \quad and \quad \int_{\Gamma} g \, \mathrm{d}\boldsymbol{\sigma} = 0, \tag{2}$$

where div_{Γ} is the surface divergence on Γ . Then, the problem (E_T) has a unique solution **u** in **W**^{1,p}(Ω) satisfying the estimate:

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p}(\Omega)} \leq C \big(\|\boldsymbol{f}\|_{\boldsymbol{L}^{p}(\Omega)} + \|\boldsymbol{g}\|_{\boldsymbol{W}^{1-1/p,p}(\Gamma)} + \|\boldsymbol{h} \times \boldsymbol{n}\|_{\boldsymbol{W}^{-1/p,p}(\Gamma)} \big).$$

Moreover, if $g \in W^{2-1/p,p}(\Gamma)$ and $h \in W^{1-1/p,p}(\Gamma)$, then the solution u belongs to $W^{2,p}(\Omega)$ and satisfies the corresponding estimate.

Sketch of the proof. For the proof of weak solutions, we reduce (E_T) to a problem having homogeneous normal boundary condition on Γ , where it is easy to solve it by using the *Inf–Sup* condition (see [4]):

$$\inf_{\boldsymbol{\varphi}\in\boldsymbol{V}_{T}^{p'}(\Omega)} \sup_{\boldsymbol{u}\in\boldsymbol{V}_{T}^{p}(\Omega)} \frac{\int_{\Omega} \operatorname{curl}\boldsymbol{u} \cdot \operatorname{curl}\boldsymbol{\varphi} \, \mathrm{d}\boldsymbol{x}}{\|\boldsymbol{u}\|_{\boldsymbol{X}_{T}^{p}(\Omega)} \|\boldsymbol{\varphi}\|_{\boldsymbol{X}_{T}^{p'}(\Omega)}} > 0, \tag{3}$$

with

$$\boldsymbol{V}_T^p(\Omega) = \left\{ \boldsymbol{v} \in \boldsymbol{X}_T^p(\Omega); \text{ div } \boldsymbol{v} = 0 \text{ in } \Omega, \langle \boldsymbol{v} \cdot \boldsymbol{n}, 1 \rangle_{\Sigma_j} = 0, 1 \leq j \leq J \right\}.$$

For the regularity, we set $\mathbf{z} = \mathbf{curl} \mathbf{u}$. Since $\mathbf{z} \times \mathbf{n} \in \mathbf{W}^{1-1/p,p}(\Gamma)$, we deduce from [4] that $\mathbf{z} \in \mathbf{W}^{1,p}(\Omega)$. Therefore, since $\mathbf{u} \cdot \mathbf{n} \in W^{2-1/p,p}(\Gamma)$, then $\mathbf{u} \in \mathbf{W}^{2,p}(\Omega)$. \Box

Theorem 2.1 (Weak and Strong solutions for (S_T)). Let **f**, g, **h** with

$$\boldsymbol{f} \in \left(\boldsymbol{H}_{0}^{p'}(\operatorname{div},\Omega)\right)', \qquad \boldsymbol{g} \in W^{1-\frac{1}{p},p}(\Gamma), \qquad \boldsymbol{h} \in \boldsymbol{W}^{-\frac{1}{p},p}(\Gamma), \tag{4}$$

and verify the compatibility conditions (2). Then, the Stokes problem (S_T) has a unique solution $(\boldsymbol{u}, \pi) \in \boldsymbol{W}^{1,p}(\Omega) \times L^p(\Omega)/\mathbb{R}$ satisfying the estimate:

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p}(\Omega)}+\|\boldsymbol{\pi}\|_{L^{p}(\Omega)/\mathbb{R}} \leq C\left(\|\boldsymbol{f}\|_{(\boldsymbol{H}_{0}^{p'}(\operatorname{div},\Omega))'}+\|\boldsymbol{g}\|_{\boldsymbol{W}^{1-\frac{1}{p},p}(\Gamma)}+\|\boldsymbol{h}\times\boldsymbol{n}\|_{\boldsymbol{W}^{-\frac{1}{p},p}(\Gamma)}\right).$$

Moreover, if $\mathbf{f} \in \mathbf{L}^{p}(\Omega)$, $g \in W^{2-\frac{1}{p},p}(\Gamma)$, $\mathbf{h} \in \mathbf{W}^{1-\frac{1}{p},p}(\Gamma)$, the solution (\mathbf{u},π) belongs to $\mathbf{W}^{2,p}(\Omega) \times W^{1,p}(\Omega)$ and satisfies the corresponding estimate.

Sketch of the proof. We reduce (S_T) to a problem with the homogeneous normal boundary condition on Γ . We use again the *lnf–Sup* condition (3) in order to prove the existence of a unique $\boldsymbol{u} \in \boldsymbol{W}^{1,p}(\Omega)$ solution of (S_T) and by using De Rham's Theorem, we prove the existence of a unique $\pi \in L^p(\Omega)$. For the regularity of the solution, we observe that π satisfies: $\operatorname{div}(\nabla \pi - \boldsymbol{f}) = 0$ in Ω and $(\nabla \pi - \boldsymbol{f}) \cdot \boldsymbol{n} = -\operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n})$ on Γ which implies that π belongs to $W^{1,p}(\Omega)$. We deduce the regularity of \boldsymbol{u} since \boldsymbol{u} is a solution of a problem (E_T) with the right-hand side $\boldsymbol{F} = \boldsymbol{f} - \nabla \pi$ and by using some regularity properties concerning the tangential vector fields \boldsymbol{v} in $L^p(\Omega)$ with div \boldsymbol{v} in $W^{1,p}(\Omega)$ and $\operatorname{curl} \boldsymbol{v}$ in $W^{1,p}(\Omega)$. \Box

Remark 2.2. We can also treat the case when the divergence operator does not vanish. So we consider the following Stokes problem

$$\begin{cases} -\Delta \boldsymbol{u} + \nabla \boldsymbol{\pi} = \boldsymbol{f} \quad \text{and} \quad \operatorname{div} \boldsymbol{u} = \boldsymbol{\chi} \quad \text{in } \Omega, \\ \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{g} \quad \text{and} \quad \operatorname{curl} \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{h} \times \boldsymbol{n} \quad \text{on } \Gamma, \qquad \langle \boldsymbol{u} \cdot \boldsymbol{n}, 1 \rangle_{\Sigma_j} = \boldsymbol{0}, \quad 1 \leq j \leq J. \end{cases}$$
(5)

If we suppose that χ belongs to $L^p(\Omega)$, f, g, h as in (4) satisfying the first compatibility condition in (2) and such that

$$\int_{\Omega} \chi \, \mathrm{d}\boldsymbol{x} = \int_{\Gamma} g \, \mathrm{d}\boldsymbol{\sigma} \,, \tag{6}$$

then, we can prove that the Stokes problem (5) has a unique solution $(\boldsymbol{u}, \pi) \in \boldsymbol{W}^{1,p}(\Omega) \times L^p(\Omega)$ satisfying the estimate:

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p}(\Omega)} + \|\pi\|_{L^{p}(\Omega)/\mathbb{R}} \leq C \Big(\|\boldsymbol{f}\|_{(\boldsymbol{H}_{0}^{p'}(\operatorname{div},\Omega))'} + \|\chi\|_{L^{p}(\Omega)} + \|\boldsymbol{g}\|_{W^{1-\frac{1}{p},p}(\Gamma)} + \|\boldsymbol{h}\times\boldsymbol{n}\|_{\boldsymbol{W}^{-\frac{1}{p},p}(\Gamma)}\Big).$$

Moreover, if we suppose that $\chi \in W^{1,p}(\Omega)$ with $\boldsymbol{f} \in L^p(\Omega)$, $g \in W^{2-\frac{1}{p},p}(\Gamma)$, $\boldsymbol{h} \in W^{1-\frac{1}{p},p}(\Gamma)$, then the solution (\boldsymbol{u},π) belongs to $W^{2,p}(\Omega) \times W^{1,p}(\Omega)$ and satisfies the corresponding estimate.

We define now the following spaces: $T^p(\Omega) = \{ \varphi \in H_0^p(\operatorname{div}, \Omega); \operatorname{div} \varphi \in W_0^{1,p}(\Omega) \}, Y_T^p(\Omega) = \{ \varphi \in W^{2,p}(\Omega); \varphi \cdot \mathbf{n} = 0, \operatorname{div} \varphi = 0, \operatorname{curl} \varphi \times \mathbf{n} = \mathbf{0} \text{ on } \Gamma \}$ and $H_p(\Delta; \Omega) = \{ \mathbf{v} \in L^p(\Omega); \Delta \mathbf{v} \in (T^{p'}(\Omega))' \}$, endowed with the corresponding graph norms. Note that $\mathcal{D}(\Omega)$ is dense in $T^p(\Omega)$ and then $[T^p(\Omega)]'$ is a subspace of $\mathcal{D}'(\Omega)$.

Theorem 2.3 (Very weak solutions for (S_T)). Let **f**, χ , g, and **h** with

$$\boldsymbol{f} \in (\boldsymbol{T}^{p'}(\Omega))', \qquad \chi \in L^p(\Omega), \qquad \boldsymbol{g} \in W^{-1/p,p}(\Gamma), \qquad \boldsymbol{h} \in \boldsymbol{W}^{-1-1/p,p}(\Gamma).$$

and satisfying the first compatibility condition in (2) and (6). Then, the Stokes problem (5) has exactly one solution $\mathbf{u} \in \mathbf{H}_p(\Delta; \Omega)$ and $\pi \in W^{-1,p}(\Omega)/\mathbb{R}$ satisfying the estimate:

$$\|\boldsymbol{u}\|_{\boldsymbol{H}_{p}(\Delta;\Omega)}+\|\pi\|_{W^{-1,p}(\Omega)/\mathbb{R}} \leq C(\|\boldsymbol{f}\|_{(\boldsymbol{T}^{p'}(\Omega))'}+\|\chi\|_{L^{p}(\Omega)}+\|\boldsymbol{g}\|_{W^{-1/p,p}(\Gamma)}+\|\boldsymbol{h}\times\boldsymbol{n}\|_{W^{-1-1/p,p}(\Gamma)}).$$

Sketch of the proof. We use here the same ideas as in [2] and [3] to prove the existence of very weak solutions. First, we prove the density of the space $\mathcal{D}(\overline{\Omega})$ in $H_p(\Delta; \Omega)$. Second, we prove that the mapping $\gamma : \mathbf{u} \mapsto \mathbf{curl} \mathbf{u}|_{\Gamma} \times \mathbf{n}$ on the space $\mathcal{D}(\overline{\Omega})$ can be extended by continuity to a linear and continuous mapping still denoted by γ , from $H_p(\Delta; \Omega)$ into $\mathbf{W}^{-1-\frac{1}{p},p}(\Gamma)$ and we have the following Green formula: for any $\mathbf{u} \in H_p(\Delta; \Omega)$ and $\boldsymbol{\varphi} \in \mathbf{Y}_T^{p'}(\Omega)$,

$$\left\langle \Delta \boldsymbol{u}, \boldsymbol{\varphi} \right\rangle_{(\boldsymbol{T}^{p'}(\Omega))' \times \boldsymbol{T}^{p'}(\Omega)} = \int_{\Omega} \boldsymbol{u} \cdot \Delta \boldsymbol{\varphi} \, \mathrm{d}\boldsymbol{x} + \left\langle \operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}, \boldsymbol{\varphi} \right\rangle_{\boldsymbol{W}^{-1 - \frac{1}{p}, p}(\Gamma) \times \boldsymbol{W}^{1 + 1/p, p'}(\Gamma)}.$$
(7)

Finally, using the formula (7), we can write an equivalent variational formulation of the problem (5) and we are able to conclude by using a duality argument. \Box

3. The Stokes equations with the normal boundary conditions

In this section, we focus on the study of the Stokes problem (S_N) . Observe that the pressure π can be obtained independently of the velocity as a solution of a Dirichlet problem. So, the velocity \boldsymbol{u} is a solution of an elliptic system of type (E_N) .

Proposition 3.1. Let $\mathbf{f} \in (\mathbf{H}_0^{p'}(\mathbf{curl}, \Omega))'$ with div $\mathbf{f} = 0$ in Ω and $\mathbf{g} \in \mathbf{W}^{1-1/p, p}(\Gamma)$ satisfying the compatibility condition:

$$\forall \boldsymbol{v} \in \boldsymbol{K}_{N}^{p'}(\Omega), \quad \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{[\boldsymbol{H}_{0}^{p'}(\operatorname{curl},\Omega)]' \times \boldsymbol{H}_{0}^{p'}(\operatorname{curl},\Omega)} = 0.$$
(8)

Then, the problem (E_N) has a unique solution **u** in $W^{1,p}(\Omega)$ satisfying the estimate:

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p}(\Omega)} \leq C \left(\|\boldsymbol{f}\|_{[\boldsymbol{H}_{0}^{p'}(\operatorname{curl},\Omega)]'} + \|\boldsymbol{g} \times \boldsymbol{n}\|_{\boldsymbol{W}^{1-1/p,p}(\Gamma)} \right)$$

Moreover, if $\mathbf{f} \in \mathbf{L}^p(\Omega)$ and $\mathbf{g} \in \mathbf{W}^{2-1/p,p}(\Gamma)$, then the solution \mathbf{u} is in $\mathbf{W}^{2,p}(\Omega)$ and satisfies the corresponding estimate.

Sketch of the proof. First, we lift the boundary condition and we write an equivalent variational formulation for the homogeneous problem as follows: find $\boldsymbol{u} \in \boldsymbol{V}_N^p(\Omega)$ such that

$$\forall \boldsymbol{\varphi} \in \boldsymbol{V}_{N}^{p'}(\Omega), \quad \int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{\varphi} \, \mathrm{d}\boldsymbol{x} = \langle \boldsymbol{f}, \boldsymbol{\varphi} \rangle_{\Omega}, \tag{9}$$

where $V_N^p(\Omega) = \{ \boldsymbol{w} \in \boldsymbol{X}_N^p(\Omega) ; \text{ div } \boldsymbol{w} = 0 \text{ in } \Omega \text{ and } \langle \boldsymbol{w} \cdot \boldsymbol{n}, 1 \rangle_{\Gamma_i} = 0, 1 \leq i \leq l \}$. Next, using a result concerning normal vector potential [4], we establish a similar *Inf–Sup* condition to (3), where the spaces $\boldsymbol{X}_T^p(\Omega)$ and $\boldsymbol{V}_T^p(\Omega)$ are replaced by the spaces $\boldsymbol{X}_N^p(\Omega)$ and $\boldsymbol{V}_N^p(\Omega)$, respectively. This conclude the proof of weak solution. For the regularity of the velocity, we need some additional properties. We prove the following trace formula for any $\boldsymbol{v} \in \boldsymbol{W}^{1,p}(\Omega)$:

$$\operatorname{curl} \boldsymbol{u} \cdot \boldsymbol{n} = \left(\sum_{j=1}^{2} \frac{\partial \, \boldsymbol{u}}{\partial \, \boldsymbol{s}_{j}} \times \boldsymbol{\tau}_{j}\right) \cdot \boldsymbol{n} \quad \text{on } \boldsymbol{\Gamma}, \quad \text{in the sense of } \boldsymbol{W}^{-1/p, \, p}(\boldsymbol{\Gamma}).$$
(10)

As a consequence, if we suppose that $\boldsymbol{u} \times \boldsymbol{n} \in \boldsymbol{W}^{2-1/p,p}(\Gamma)$, then $\operatorname{curl} \boldsymbol{u} \cdot \boldsymbol{n} \in W^{1-1/p,p}(\Gamma)$. This implies that $\operatorname{curl} \boldsymbol{u} \in \boldsymbol{W}^{1,p}(\Omega)$ and thereafter from [4], we have $\boldsymbol{u} \in \boldsymbol{W}^{2,p}(\Omega)$. \Box

We can also treat the case of the following elliptic system, which is similar to (E_N) but where we have replaced the condition div u = 0 in Ω by div u = 0 on Γ :

$$(E'_N) -\Delta u = f$$
 in Ω , div $u = 0$ on Γ , $u \times n = 0$ on Γ , $(u \cdot n, 1)_{\Gamma_i} = 0$ for any $1 \le i \le I$.

Theorem 3.1. Let $\mathbf{f} \in (\mathbf{H}_0^{p'}(\operatorname{curl}, \Omega))'$ satisfying the compatibility condition (8). Then, the problem (E'_N) has a unique solution \mathbf{u} in $\mathbf{W}^{1,p}(\Omega)$ satisfying the estimate:

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p}(\Omega)} \leqslant C \|\boldsymbol{f}\|_{[\boldsymbol{H}_0^{p'}(\operatorname{curl},\Omega)]'}.$$
(11)

Moreover, if $\mathbf{f} \in \mathbf{L}^{p}(\Omega)$, then the solution \mathbf{u} is in $\mathbf{W}^{2,p}(\Omega)$ and satisfies the corresponding estimate.

Theorem 3.2 (Weak and Strong solutions for (S_N)). Let f, g, π_0 such that

$$\boldsymbol{f} \in \left(\boldsymbol{H}_{0}^{p'}(\operatorname{curl},\Omega)\right)', \qquad \boldsymbol{g} \in \boldsymbol{W}^{1-1/p,p}(\Gamma), \qquad \pi_{0} \in W^{1-1/p,p}(\Gamma), \tag{12}$$

$$\forall \boldsymbol{\nu} \in \boldsymbol{K}_{N}^{p'}(\Omega), \quad \langle \boldsymbol{f}, \boldsymbol{\nu} \rangle_{[\boldsymbol{H}_{0}^{p'}(\operatorname{curl},\Omega)]' \times \boldsymbol{H}_{0}^{p'}(\operatorname{curl},\Omega)} - \int_{\Gamma} \pi_{0} \boldsymbol{\nu} \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{\sigma} = 0, \tag{13}$$

then, the Stokes problem (S_N) has a unique solution $(\mathbf{u}, \pi) \in \mathbf{W}^{1,p}(\Omega) \times W^{1,p}(\Omega)$ satisfying the estimate

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p}(\Omega)} + \|\pi\|_{W^{1,p}(\Omega)} \leq C \left(\|\boldsymbol{f}\|_{(\boldsymbol{H}_{0}^{p'}(\operatorname{curl},\Omega))'} + \|\boldsymbol{g} \times \boldsymbol{n}\|_{\boldsymbol{W}^{1-1/p,p}(\Gamma)} + \|\pi_{0}\|_{W^{1-1/p,p}(\Gamma)} \right).$$
(14)

Moreover, if $\boldsymbol{f} \in \boldsymbol{L}^{p}(\Omega)$, $\boldsymbol{g} \in \boldsymbol{W}^{2-1/p,p}(\Gamma)$, $\pi_{0} \in W^{1-1/p,p}(\Gamma)$, then the solution (\boldsymbol{u}, π) belongs to $\boldsymbol{W}^{2,p}(\Omega) \times W^{1,p}(\Omega)$ and satisfies the corresponding estimate.

Sketch of the proof. We note that the pressure is a solution of the following Dirichlet problem: $-\Delta \pi = \text{div } \boldsymbol{f}$ in Ω and $\pi = \pi_0$ on Γ . Since $\pi_0 \in W^{1-1/p,p}(\Gamma)$, then $\pi \in W^{1,p}(\Omega)$. The velocity is a solution of the problem (E_N) and it suffices to apply Proposition 3.1 to obtain weak and strong solutions. \Box

Theorem 3.3 (Very weak solutions for (S_N)). Let f, g, and π_0 with

$$\boldsymbol{f} \in \left[\boldsymbol{H}_{0}^{p'}(\operatorname{\boldsymbol{curl}}, \Omega)\right]', \qquad \boldsymbol{g} \in \boldsymbol{W}^{-1/p, p}(\Gamma), \qquad \pi_{0} \in W^{-1/p, p}(\Gamma),$$

and satisfying the compatibility conditions (13). Then, the Stokes problem (S_N) has exactly one solution $\mathbf{u} \in \mathbf{L}^p(\Omega)$ and $\pi \in L^p(\Omega)$. Moreover, there exists a constant C > 0 depending only on p and Ω such that:

$$\|\boldsymbol{u}\|_{\boldsymbol{L}^{p}(\Omega)} + \|\pi\|_{L^{p}(\Omega)} \leq C \left(\|\boldsymbol{f}\|_{[\boldsymbol{H}_{0}^{p'}(\operatorname{curl},\Omega)]'} + \|\boldsymbol{g}\|_{\boldsymbol{W}^{-1/p,p}(\Gamma)} + \|\pi_{0}\|_{\boldsymbol{W}^{-1/p,p}(\Gamma)} \right).$$
(15)

Sketch of the proof. We use similar arguments presented for the case of problem (S_N) and the main difference between the two proofs is the fact that we prove a global Green formula. More precisely, we set the space

$$\boldsymbol{M}^{p}(\Omega) = \left\{ (\boldsymbol{u}, \pi) \in \boldsymbol{Z}^{p}(\Omega) \times L^{p}(\Omega); \ -\Delta \boldsymbol{u} + \nabla \pi \in \left[\boldsymbol{H}_{0}^{p'}(\operatorname{\boldsymbol{curl}}, \Omega) \right]' \right\}$$

with $Z^p(\Omega) = \{ \mathbf{v} \in L^p(\Omega), \text{ div } \mathbf{v} = 0 \text{ in } \Omega \text{ and } \langle \mathbf{v} \cdot \mathbf{n}, 1 \rangle_{\Gamma_i}, 1 \leq i \leq l \}$ and by establishing the density of $\mathcal{D}_{\sigma}(\overline{\Omega}) \times \mathcal{D}(\overline{\Omega})$ in $M^p(\Omega)$, we prove that the trace of any $(\mathbf{u}, \pi) \in M^p(\Omega)$ belongs to $W^{-1/p, p}(\Gamma) \times W^{-1/p, p}(\Gamma)$ with the following Green formula for any $\varphi \in Y_N^{p'}(\Omega)$:

$$\langle -\Delta \boldsymbol{u} + \nabla \boldsymbol{\pi}, \boldsymbol{\varphi} \rangle_{\Omega} = -\int_{\Omega} \boldsymbol{u} \cdot \Delta \boldsymbol{\varphi} \, \mathrm{d} \boldsymbol{x} + \langle \boldsymbol{u} \times \boldsymbol{n}, \operatorname{curl} \boldsymbol{\varphi} \rangle_{\Gamma} - \int_{\Omega} \boldsymbol{\pi} \operatorname{div} \boldsymbol{\varphi} \, \mathrm{d} \boldsymbol{x} + \langle \boldsymbol{\pi}, \boldsymbol{\varphi} \cdot \boldsymbol{n} \rangle_{\Gamma}, \tag{16}$$

where $\boldsymbol{Y}_{N}^{p'}(\Omega) = \{ \boldsymbol{\varphi} \in \boldsymbol{W}^{2,p}(\Omega) ; \text{ div } \boldsymbol{\varphi} = 0 \text{ and } \boldsymbol{\varphi} \times \boldsymbol{n} = \boldsymbol{0} \text{ on } \Gamma \}$. In the first time, we prove the existence of a unique $\pi \in W^{-1,p}(\Omega)$, next we use [3] in order to prove that $\pi \in L^{p}(\Omega)$. \Box

4. Helmholtz decompositions

According to the two types $\boldsymbol{u} \cdot \boldsymbol{n}$ and $\boldsymbol{u} \times \boldsymbol{n}$ of boundary conditions on Γ , we give decompositions of vector fields \boldsymbol{u} in $L^p(\Omega)$. Our results may be regarded as an extension of the well-known De Rham–Hodge–Kodaira decomposition of \mathcal{C}^{∞} -forms on compact Riemannian manifolds into L^p -vector fields on Ω . We can find similar decompositions in [6], where the authors consider more regular domain with \mathcal{C}^{∞} -boundary Γ . We can see also [7] for the case p = 2.

Theorem 4.1.

(i) Let $\boldsymbol{u} \in \boldsymbol{L}^p(\Omega)$. Then, there exist $\chi \in W^{1,p}(\Omega)$, $\boldsymbol{w} \in \boldsymbol{W}^{1,p}_{\sigma}(\Omega) \cap \boldsymbol{X}^p_N(\Omega)$, $\boldsymbol{z} \in \boldsymbol{K}^p_T(\Omega)$ such that: $\boldsymbol{u} = \boldsymbol{z} + \nabla \chi + \operatorname{curl} \boldsymbol{w}$ satisfies the estimate:

$$\|\boldsymbol{z}\|_{\boldsymbol{L}^{p}(\Omega)}+\|\boldsymbol{\chi}\|_{W^{1,p}(\Omega)/\mathbb{R}}+\|\boldsymbol{w}\|_{\boldsymbol{W}^{1,p}(\Omega)/\boldsymbol{K}_{N}^{p}(\Omega)}\leqslant C\|\boldsymbol{u}\|_{\boldsymbol{L}^{p}(\Omega)},$$

where z is unique, χ is unique up to an additive constant and w is unique up to an additive element of $K_{p}^{p}(\Omega)$.

(ii) Let $\boldsymbol{u} \in L^p(\Omega)$. Then, there exist $\chi \in W_0^{1,p}(\Omega)$, $\boldsymbol{w} \in W_{\sigma}^{1,p}(\Omega) \cap \boldsymbol{X}_T^p(\Omega)$, $\boldsymbol{z} \in \boldsymbol{K}_N^p(\Omega)$ such that: $\boldsymbol{u} = \boldsymbol{z} + \nabla \chi + \operatorname{curl} \boldsymbol{w}$ satisfies the estimate:

 $\|\boldsymbol{z}\|_{\boldsymbol{L}^{p}(\Omega)}+\|\boldsymbol{\chi}\|_{W^{1,p}(\Omega)}+\|\boldsymbol{w}\|_{\boldsymbol{W}^{1,p}(\Omega)/\boldsymbol{K}^{p}_{+}(\Omega)}\leqslant C\|\boldsymbol{u}\|_{\boldsymbol{L}^{p}(\Omega)},$

where **z** and χ are unique and **w** is unique up to an additive element of $K_T^p(\Omega)$.

Sketch of the proof. We give a short proof of the first point and the proof of the second one is similar. First, we introduce the solution χ in $W^{1,p}(\Omega)$, unique up to an additive constant, of the problem: $-\Delta \chi = \operatorname{div} \boldsymbol{u}$ in Ω and $(\operatorname{grad} \chi - \boldsymbol{u}) \cdot \boldsymbol{n} = 0$ on Γ . Second, we solve the problem: $-\Delta \boldsymbol{w} = \operatorname{curl} \boldsymbol{u}$ in Ω and div $\boldsymbol{w} = 0$ in Ω , $\boldsymbol{w} \times \boldsymbol{n} = \boldsymbol{0}$ on Γ , which has a solution $\boldsymbol{w} \in \boldsymbol{W}^{1,p}(\Omega)$, unique up to an additive element of $K_N^p(\Omega)$. To finish, observe that the function $\boldsymbol{z} = \boldsymbol{u} - \nabla \chi - \operatorname{curl} \boldsymbol{w}$ belongs to $K_T^p(\Omega)$. \Box

Remark 4.2. We can prove also similar decompositions for singular vector fields $\boldsymbol{u} \in (\boldsymbol{H}_0^p(\operatorname{div}, \Omega))'$ and for $\boldsymbol{u} \in (\boldsymbol{H}_0^p(\operatorname{curl}, \Omega))'$.

References

- [1] C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci. 21 (1998) 823-864.
- [2] C. Amrouche, V. Girault, Decomposition of vector space and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 119 (44) (1994) 109–140.
- [3] C. Amrouche, M.A. Rodríguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Ration. Mech. Anal. 199 (2011) 597-651.
- [4] C. Amrouche, N. Seloula, L^p-theory for vector potentials and Sobolev's inequalities for vector fields. Application to the Stokes problem's with pressure boundary conditions, submitted for publication.
- [5] C. Conca, F. Murat, O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Jpn. J. Math. 20 (1994) 263–318.
- [6] H. Kozono, T. Yanagisawa, L^r-variational inequality for vector fields and the Helmholtz–Weyl decomposition in bounded domains, Indiana Univ. Math. J. 58 (4) (2009).
- [7] R. Temam, Theory and Numerical Analysis of the Navier-Stokes Equations, North-Holland, Amsterdam, 1977.