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In a three-dimensional bounded possibly multiply-connected domain of class C 1,1, we
consider the stationary Stokes equations with nonstandard boundary conditions of the
form u · n = g and curl u × n = h × n or u × n = g × n and π = π0 on the boundary Γ .
We prove the existence and uniqueness of weak, strong and very weak solutions
corresponding to each boundary condition in Lp theory. Our proofs are based on obtaining
Inf –Sup conditions that play a fundamental role. And finally, we give two Helmholtz
decompositions that consist of two kinds of boundary conditions such as u · n and u × n
on Γ .
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r é s u m é

Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe de classe
C 1,1, nous considérons les équations stationnaires de Stokes avec des conditions aux
limites de la forme u · n = g et curl u × n = h × n ou u × n = g × n et π = π0 sur le
bord Γ . Nous prouvons l’existence et l’unicité des solutions faibles, fortes et très faibles
en théorie Lp . Nos preuves sont basées sur l’obtention de conditions Inf –Sup qui jouent
un rôle fondamental. Finalement, on donne deux décompositions d’Helmholtz qui tiennent
compte des deux types de conditions aux limites u · n et u × n sur Γ .

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

L’objet de cette Note consiste essentiellement à étudier en théorie L p , avec 1 < p < ∞, l’existence et l’unicité de solutions
faibles, fortes et très faibles pour les équations stationnaires de Stokes (ST ) dans le cas des conditions aux limites u ·
n = g et curl u × n = h × n sur Γ et (SN ) dans le cas des conditions aux limites u × n = g × n et π = π0 sur Γ . Les
résultats concernant l’existence de solutions faibles et fortes pour (ST ) sont donnés dans le Théorème 2.1 ; et en ce qui a
trait à (SN ), les résultats sont donnés dans le Théorème 3.2. Pour la preuve de solutions très faibles pour (ST ) et (SN ),
l’une des difficultés consiste à donner un sens aux traces sur le bord. De nombreuses applications donnent souvent lieu à
des problèmes où les conditions aux limites ci-dessus interviennent naturellement sur des parties du bord du domaine.
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1. Introduction

Let Ω be a bounded open connected set of R3 of class C 1,1 with boundary Γ . Let Γi , 0 � i � I , denote the connected
components of the boundary Γ , Γ0 being the exterior boundary of Ω . We do not assume that Ω is simply-connected but
we suppose that there exist J connected open surfaces Σ j , 1 � j � J , called ‘cuts,’ contained in Ω , such that each surface
Σ j is an open subset of a smooth manifold, the boundary of Σ j is contained in Γ . The intersection Σi ∩ Σ j is empty for

i �= j, and finally the open set Ω◦ = Ω \ ⋃ J
j=1 Σ j is simply-connected and pseudo-C 1,1 (see [1]). We are interested in some

questions concerning the stationary Stokes equations with nonstandard boundary conditions, that generally can be written
as:

(ST )

⎧⎪⎨
⎪⎩

−�u + ∇π = f and div u = 0 in Ω,

u · n = g and curl u × n = h × n on Γ,

〈u · n,1〉Σ j = 0, 1 � j � J ,

(SN)

⎧⎪⎨
⎪⎩

−�u + ∇ π = f and div u = 0 in Ω,

u × n = g × n and π = π0 on Γ,

〈u · n,1〉Γi = 0, 1 � i � I,

where u denotes the velocity field and π the pressure, both being unknown, and f , g , h, g and π0 are given. Applications
often give rise to problems where the previous boundary conditions occur naturally. We can find, in a Hilbertian case,
a study of the Stokes problem with mixed boundary conditions of the same type [5].

To prove the existence of solutions of problems (ST ) and (SN ) (see the sketch of the proofs of Theorem 2.1 for (ST ) and
Theorem 3.2 for (SN )) we begin by solving pressure π as a solution of a Neumann problem or Dirichlet problem. Then, we
are reduced to solve the following elliptic problems:

(ET ) −�ξ = f and div ξ = 0 in Ω, ξ · n = g and curl ξ × n = h × n on Γ,

〈ξ · n,1〉Σ j = 0, 1 � j � J ,

(EN) −�ξ = f and div ξ = 0 in Ω, ξ × n = g × n on Γ, 〈ξ · n,1〉Γi = 0, 1 � i � I.

Indeed, if (u, π) solves problem (ST ) (it is more simply for the problem (SN )), then �π = div f in Ω and formally (but
we can it justify) we have for any ϕ ∈ W 2,p′

(Ω)

〈
∂π

∂n
,ϕ

〉
Γ

= 〈 f · n − curl curl u · n,ϕ〉Γ = 〈 f · n,ϕ〉Γ − 〈curl u × n,∇ϕ〉Γ = 〈
f · n + divΓ (h × n),ϕ

〉
Γ

,

where 〈·,·〉Γ denotes the duality product between W −1− 1
p ,p

(Γ ) and W 1+ 1
p ,p′

(Γ ). That means that ∂π
∂n = f ·n +divΓ (h ×n)

in the sense of W −1− 1
p ,p

(Γ ).
In the sequel, the duality product between a space X and its dual X ′ is denoted by 〈·,·〉X,X ′ . For any 1 < p < ∞, we then

define the spaces:

H p(curl,Ω) = {
v ∈ L p(Ω); curl v ∈ Lp(Ω)

}
, H p(div,Ω) = {

v ∈ Lp(Ω);div v ∈ Lp(Ω)
}
,

X p(Ω) = H p(curl,Ω) ∩ H p(div,Ω),

which are equipped with the graph norm, and their subspaces:

H p
0 (curl,Ω) = {

v ∈ H p(curl,Ω); v × n = 0 on Γ
}
, H p

0 (div,Ω) = {
v ∈ H p(div,Ω); v · n = 0 on Γ

}
,

X p
N(Ω) = {

v ∈ X p(Ω); v × n = 0 on Γ
}
, X p

T (Ω) = {
v ∈ X p(Ω); v · n = 0 on Γ

}
,

and X p
0 (Ω) = X p

N(Ω) ∩ X p
T (Ω). We also define the space W 1,p

σ (Ω) = {v ∈ W 1,p(Ω); div v = 0 in Ω}. For any function q in

W 1,p(Ω◦), grad q can be extended to L p(Ω). We denote this extension by g̃rad q. We finally define the spaces:

K p
T (Ω) = {

v ∈ X p
T (Ω); curl v = 0, div v = 0 in Ω

}
,

K p
N(Ω) = {

v ∈ X p
N(Ω); curl v = 0, div v = 0 in Ω

}
.

We know due to [4] (see also [1] for the case p = 2) that the space K p
T (Ω) is of dimension J and that it is spanned by

functions g̃rad qT
j , 1 � j � J , where each qT

j ∈ W 1,p(Ω◦). Similarly, the dimension of the space K p
N (Ω) is I and that it is

spanned by the functions grad qN
i , 1 � i � I , where each qN

i ∈ W 1,p(Ω). In what follows, the letter C denotes a constant
that does not necessarily have the same value. The detailed proofs of the results announced in this Note are given in [4].
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2. The Stokes equations with the tangential boundary conditions

We can prove that by assuming appropriate conditions on f and h, the pressure in the problem (ST ) may be constant,
and we are reduced to solve the elliptic system (E T ):

Proposition 2.1. Let f belongs to L p(Ω) with div f = 0 in Ω , g ∈ W 1− 1
p ,p

(Γ ) and h ∈ W − 1
p ,p

(Γ ) verify the following compatibility
conditions:

f · n + divΓ (h × n) = 0 on Γ, (1)

∀v ∈ K p′
T (Ω),

∫
Ω

f · v dx + 〈h × n, v〉
W − 1

p ,p
(Γ )×W

1
p ,p′

(Γ )
= 0 and

∫
Γ

g dσ = 0, (2)

where divΓ is the surface divergence on Γ . Then, the problem (E T ) has a unique solution u in W 1,p(Ω) satisfying the estimate:

‖u‖W 1,p(Ω) � C
(‖ f ‖L p(Ω) + ‖g‖W 1−1/p,p(Γ ) + ‖h × n‖W −1/p,p(Γ )

)
.

Moreover, if g ∈ W 2−1/p,p(Γ ) and h ∈ W 1−1/p,p(Γ ), then the solution u belongs to W 2,p(Ω) and satisfies the corresponding esti-
mate.

Sketch of the proof. For the proof of weak solutions, we reduce (E T ) to a problem having homogeneous normal boundary
condition on Γ , where it is easy to solve it by using the Inf–Sup condition (see [4]):

inf
ϕ∈V p′

T (Ω)

sup
u∈V p

T (Ω)

∫
Ω

curl u · curlϕ dx

‖u‖X p
T (Ω)‖ϕ‖

X p′
T (Ω)

> 0, (3)

with

V p
T (Ω) = {

v ∈ X p
T (Ω); div v = 0 in Ω, 〈v · n,1〉Σ j = 0, 1 � j � J

}
.

For the regularity, we set z = curl u. Since z × n ∈ W 1−1/p,p(Γ ), we deduce from [4] that z ∈ W 1,p(Ω). Therefore, since
u · n ∈ W 2−1/p,p(Γ ), then u ∈ W 2,p(Ω). �
Theorem 2.1 (Weak and Strong solutions for (ST )). Let f , g, h with

f ∈ (
H p′

0 (div,Ω)
)′
, g ∈ W 1− 1

p ,p
(Γ ), h ∈ W − 1

p ,p
(Γ ), (4)

and verify the compatibility conditions (2). Then, the Stokes problem (ST ) has a unique solution (u,π) ∈ W 1,p(Ω) × L p(Ω)/R

satisfying the estimate:

‖u‖W 1,p(Ω) + ‖π‖L p(Ω)/R � C
(‖ f ‖

(H p′
0 (div,Ω))′ + ‖g‖

W
1− 1

p ,p
(Γ )

+ ‖h × n‖
W − 1

p ,p
(Γ )

)
.

Moreover, if f ∈ L p(Ω), g ∈ W 2− 1
p ,p

(Γ ), h ∈ W 1− 1
p ,p

(Γ ), the solution (u,π) belongs to W 2,p(Ω) × W 1,p(Ω) and satisfies the
corresponding estimate.

Sketch of the proof. We reduce (ST ) to a problem with the homogeneous normal boundary condition on Γ . We use again
the Inf –Sup condition (3) in order to prove the existence of a unique u ∈ W 1,p(Ω) solution of (ST ) and by using De Rham’s
Theorem, we prove the existence of a unique π ∈ L p(Ω). For the regularity of the solution, we observe that π satisfies:
div(∇π − f ) = 0 in Ω and (∇π − f ) · n = −divΓ (h × n) on Γ which implies that π belongs to W 1,p(Ω). We deduce the
regularity of u since u is a solution of a problem (E T ) with the right-hand side F = f − ∇π and by using some regularity
properties concerning the tangential vector fields v in L p(Ω) with div v in W 1,p(Ω) and curl v in W 1,p(Ω). �
Remark 2.2. We can also treat the case when the divergence operator does not vanish. So we consider the following Stokes
problem{−�u + ∇π = f and div u = χ in Ω,

u · n = g and curl u × n = h × n on Γ, 〈u · n,1〉Σ j = 0, 1 � j � J .
(5)

If we suppose that χ belongs to L p(Ω), f , g , h as in (4) satisfying the first compatibility condition in (2) and such that∫
χ dx =

∫
g dσ , (6)
Ω Γ
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then, we can prove that the Stokes problem (5) has a unique solution (u,π) ∈ W 1,p(Ω) × L p(Ω) satisfying the estimate:

‖u‖W 1,p(Ω) + ‖π‖L p(Ω)/R � C
(‖ f ‖

(H p′
0 (div,Ω))′ + ‖χ‖L p(Ω) + ‖g‖

W
1− 1

p ,p
(Γ )

+ ‖h × n‖
W − 1

p ,p
(Γ )

)
.

Moreover, if we suppose that χ ∈ W 1,p(Ω) with f ∈ L p(Ω), g ∈ W 2− 1
p ,p

(Γ ), h ∈ W 1− 1
p ,p

(Γ ), then the solution (u,π)

belongs to W 2,p(Ω) × W 1,p(Ω) and satisfies the corresponding estimate.

We define now the following spaces: T p(Ω) = {ϕ ∈ H p
0 (div,Ω); divϕ ∈ W 1,p

0 (Ω)}, Y p
T (Ω) = {ϕ ∈ W 2,p(Ω); ϕ · n = 0,

divϕ = 0, curlϕ × n = 0 on Γ } and H p(Δ;Ω) = {v ∈ Lp(Ω); �v ∈ (T p′
(Ω))′}, endowed with the corresponding graph

norms. Note that D(Ω) is dense in T p(Ω) and then [T p(Ω)]′ is a subspace of D′(Ω).

Theorem 2.3 (Very weak solutions for (ST )). Let f , χ , g, and h with

f ∈ (
T p′

(Ω)
)′
, χ ∈ Lp(Ω), g ∈ W −1/p,p(Γ ), h ∈ W −1−1/p,p(Γ ),

and satisfying the first compatibility condition in (2) and (6). Then, the Stokes problem (5) has exactly one solution u ∈ H p(Δ;Ω) and
π ∈ W −1,p(Ω)/R satisfying the estimate:

‖u‖H p(Δ;Ω) + ‖π‖W −1,p(Ω)/R � C
(‖ f ‖

(T p′
(Ω))′ + ‖χ‖L p(Ω) + ‖g‖W −1/p,p(Γ ) + ‖h × n‖W −1−1/p,p(Γ )

)
.

Sketch of the proof. We use here the same ideas as in [2] and [3] to prove the existence of very weak solutions. First,
we prove the density of the space D(Ω) in H p(Δ;Ω). Second, we prove that the mapping γ : u → curl u|Γ × n on the
space D(Ω) can be extended by continuity to a linear and continuous mapping still denoted by γ , from H p(Δ;Ω) into

W −1− 1
p ,p

(Γ ) and we have the following Green formula: for any u ∈ H p(Δ;Ω) and ϕ ∈ Y p′
T (Ω),

〈� u,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

=
∫
Ω

u · �ϕ dx + 〈curl u × n,ϕ〉
W −1− 1

p ,p
(Γ )×W 1+1/p,p′

(Γ )
. (7)

Finally, using the formula (7), we can write an equivalent variational formulation of the problem (5) and we are able to
conclude by using a duality argument. �
3. The Stokes equations with the normal boundary conditions

In this section, we focus on the study of the Stokes problem (SN ). Observe that the pressure π can be obtained inde-
pendently of the velocity as a solution of a Dirichlet problem. So, the velocity u is a solution of an elliptic system of type
(EN ).

Proposition 3.1. Let f ∈ (H p′
0 (curl,Ω))′ with div f = 0 in Ω and g ∈ W 1−1/p,p(Γ ) satisfying the compatibility condition:

∀v ∈ K p′
N (Ω), 〈 f , v〉[H p′

0 (curl,Ω)]′×H p′
0 (curl,Ω)

= 0. (8)

Then, the problem (EN ) has a unique solution u in W 1,p(Ω) satisfying the estimate:

‖u‖W 1,p(Ω) � C
(‖ f ‖[H p′

0 (curl,Ω)]′ + ‖g × n‖W 1−1/p,p(Γ )

)
.

Moreover, if f ∈ L p(Ω) and g ∈ W 2−1/p,p(Γ ), then the solution u is in W 2,p(Ω) and satisfies the corresponding estimate.

Sketch of the proof. First, we lift the boundary condition and we write an equivalent variational formulation for the homo-
geneous problem as follows: find u ∈ V p

N (Ω) such that

∀ϕ ∈ V p′
N (Ω),

∫
Ω

curl u · curlϕ dx = 〈 f ,ϕ〉Ω, (9)

where V p
N (Ω) = {w ∈ X p

N (Ω); div w = 0 in Ω and 〈w · n,1〉Γi = 0, 1 � i � I}. Next, using a result concerning normal vector
potential [4], we establish a similar Inf–Sup condition to (3), where the spaces X p

T (Ω) and V p
T (Ω) are replaced by the

spaces X p
N (Ω) and V p

N (Ω), respectively. This conclude the proof of weak solution. For the regularity of the velocity, we
need some additional properties. We prove the following trace formula for any v ∈ W 1,p(Ω):



C. Amrouche, N. Seloula / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 703–708 707
curl u · n =
(

2∑
j=1

∂ u

∂ s j
× τ j

)
· n on Γ, in the sense of W −1/p,p(Γ ). (10)

As a consequence, if we suppose that u × n ∈ W 2−1/p,p(Γ ), then curl u · n ∈ W 1−1/p,p(Γ ). This implies that curl u ∈
W 1,p(Ω) and thereafter from [4], we have u ∈ W 2,p(Ω). �

We can also treat the case of the following elliptic system, which is similar to (E N ) but where we have replaced the
condition div u = 0 in Ω by div u = 0 on Γ :(

E ′
N

) −�u = f in Ω, div u = 0 on Γ, u × n = 0 on Γ, 〈u · n,1〉Γi = 0 for any 1 � i � I.

Theorem 3.1. Let f ∈ (H p′
0 (curl,Ω))′ satisfying the compatibility condition (8). Then, the problem (E ′

N ) has a unique solution u in
W 1,p(Ω) satisfying the estimate:

‖u‖W 1,p(Ω) � C‖ f ‖[H p′
0 (curl,Ω)]′ . (11)

Moreover, if f ∈ L p(Ω), then the solution u is in W 2,p(Ω) and satisfies the corresponding estimate.

Theorem 3.2 (Weak and Strong solutions for (SN )). Let f , g , π0 such that

f ∈ (
H p′

0 (curl,Ω)
)′
, g ∈ W 1−1/p,p(Γ ), π0 ∈ W 1−1/p,p(Γ ), (12)

∀v ∈ K p′
N (Ω), 〈 f , v 〉[H p′

0 (curl,Ω)]′×H p′
0 (curl,Ω)

−
∫
Γ

π0 v · n dσ = 0, (13)

then, the Stokes problem (SN ) has a unique solution (u,π) ∈ W 1,p(Ω) × W 1,p(Ω) satisfying the estimate

‖u‖W 1,p(Ω) + ‖π‖W 1,p(Ω) � C
(‖ f ‖

(H p′
0 (curl,Ω))′ + ‖g × n‖W 1−1/p,p(Γ ) + ‖π0‖W 1−1/p,p(Γ )

)
. (14)

Moreover, if f ∈ L p(Ω), g ∈ W 2−1/p,p(Γ ), π0 ∈ W 1−1/p,p(Γ ), then the solution (u,π) belongs to W 2,p(Ω) × W 1,p(Ω) and
satisfies the corresponding estimate.

Sketch of the proof. We note that the pressure is a solution of the following Dirichlet problem: −�π = div f in Ω and
π = π0 on Γ. Since π0 ∈ W 1−1/p,p(Γ ), then π ∈ W 1,p(Ω). The velocity is a solution of the problem (E N ) and it suffices to
apply Proposition 3.1 to obtain weak and strong solutions. �
Theorem 3.3 (Very weak solutions for (SN )). Let f , g , and π0 with

f ∈ [
H p′

0 (curl,Ω)
]′
, g ∈ W −1/p,p(Γ ), π0 ∈ W −1/p,p(Γ ),

and satisfying the compatibility conditions (13). Then, the Stokes problem (SN ) has exactly one solution u ∈ L p(Ω) and π ∈ L p(Ω).
Moreover, there exists a constant C > 0 depending only on p and Ω such that:

‖u‖L p(Ω) + ‖π‖L p(Ω) � C
(‖ f ‖[H p′

0 (curl,Ω)]′ + ‖g ‖W −1/p,p(Γ ) + ‖π0‖W −1/p,p(Γ )

)
. (15)

Sketch of the proof. We use similar arguments presented for the case of problem (SN ) and the main difference between
the two proofs is the fact that we prove a global Green formula. More precisely, we set the space

M p(Ω) = {
(u,π) ∈ Z p(Ω) × Lp(Ω); −�u + ∇π ∈ [

H p′
0 (curl,Ω)

]′}
,

with Z p(Ω) = {v ∈ Lp(Ω), div v = 0 in Ω and 〈v · n,1〉Γi , 1 � i � I} and by establishing the density of Dσ (Ω) × D(Ω) in
M p(Ω), we prove that the trace of any (u,π) ∈ M p(Ω) belongs to W −1/p,p(Γ ) × W −1/p,p(Γ ) with the following Green

formula for any ϕ ∈ Y p′
N (Ω):

〈−�u + ∇π,ϕ〉Ω = −
∫
Ω

u · �ϕ dx + 〈u × n, curlϕ〉Γ −
∫
Ω

π divϕ dx + 〈π,ϕ · n〉Γ , (16)

where Y p′
N (Ω) = {ϕ ∈ W 2,p(Ω); divϕ = 0 and ϕ × n = 0 on Γ }. In the first time, we prove the existence of a unique

π ∈ W −1,p(Ω), next we use [3] in order to prove that π ∈ L p(Ω). �
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4. Helmholtz decompositions

According to the two types u · n and u × n of boundary conditions on Γ , we give decompositions of vector fields u in
Lp(Ω). Our results may be regarded as an extension of the well-known De Rham–Hodge–Kodaira decomposition of C∞-
forms on compact Riemannian manifolds into L p-vector fields on Ω . We can find similar decompositions in [6], where the
authors consider more regular domain with C∞-boundary Γ . We can see also [7] for the case p = 2.

Theorem 4.1.

(i) Let u ∈ L p(Ω). Then, there exist χ ∈ W 1,p(Ω), w ∈ W 1,p
σ (Ω) ∩ X p

N (Ω), z ∈ K p
T (Ω) such that: u = z + ∇χ + curl w satisfies

the estimate:

‖z‖L p(Ω) + ‖χ‖W 1,p(Ω)/R + ‖w‖W 1,p(Ω)/K p
N (Ω) � C‖u‖L p(Ω),

where z is unique, χ is unique up to an additive constant and w is unique up to an additive element of K p
N(Ω).

(ii) Let u ∈ L p(Ω). Then, there exist χ ∈ W 1,p
0 (Ω), w ∈ W 1,p

σ (Ω) ∩ X p
T (Ω), z ∈ K p

N (Ω) such that: u = z + ∇χ + curl w satisfies
the estimate:

‖z‖L p(Ω) + ‖χ‖W 1,p(Ω) + ‖w‖W 1,p(Ω)/K p
T (Ω) � C‖u‖L p(Ω),

where z and χ are unique and w is unique up to an additive element of K p
T (Ω).

Sketch of the proof. We give a short proof of the first point and the proof of the second one is similar. First, we introduce
the solution χ in W 1,p(Ω), unique up to an additive constant, of the problem: −�χ = div u in Ω and (gradχ − u) · n = 0
on Γ . Second, we solve the problem: −�w = curl u in Ω and div w = 0 in Ω , w × n = 0 on Γ , which has a solution
w ∈ W 1,p(Ω), unique up to an additive element of K p

N (Ω). To finish, observe that the function z = u − ∇χ − curl w
belongs to K p

T (Ω). �
Remark 4.2. We can prove also similar decompositions for singular vector fields u ∈ (H p

0 (div,Ω))′ and for u ∈
(H p

0 (curl,Ω))′ .
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